Skip to main content
Log in

Biocentri-voltammetric biosensor for acetylcholine and choline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the determination of choline and acetylcholine via biocentrivoltammetry. This method combines centrifugation and voltammetry and is based on a carbon paste electrode modified with acetylcholinesterase and choline oxidase. The electrode was placed at the bottom of a biocentrivoltammetric cell. Acetylcholine and choline are accumulated on the enzyme electrode via centrifugative forces, upon which a direct voltammetric scan is applied. Reaction time, pH values, quantities of enzyme and centrifugation parameters were optimized. A linear response is obtained in the 0.07 to 10 μM concentration range of acetylcholine, and a limit of detection as low as 0.5 μM. The linear range is between 0.1 and 500 μM for choline. The method was applied to the determination of acetylcholine and choline in spiked serum samples.

This work constitutes the first application of biocentri-voltammetry for ACh detection. Biocentri-voltammetry is the method where centrifuge and voltammetry is combined in a specially designed working cell. As a result, sensitive and effective biosensor was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kirgoz AU, Tural H, Ertas FN (2004) A new procedure for voltammetric lead determination based on coprecipation and centrifugation preconcentration. Electroanalysis 16:765–768

    Article  Google Scholar 

  2. Kirgoz AU, Tural H, Ertas FN (2005) Centri-voltammetric study with amberlite XAD-7 resin as a carrier system. Talanta 65:48–53

    Google Scholar 

  3. Ürkmez İ, Gökçel HI, Ertas FN, Tural H (2009) Centrifugation: an efficient technique for preconcentration in anodic stripping voltammetric analysis of mercury using a gold film electrode. Microchim Acta 167:225–230

    Article  Google Scholar 

  4. Anik U, Çevik S (2011) Centri-voltammetry for biosensing systems: biocentri-voltammetric xanthine detection. Microchim Acta 174:207–212

    Article  CAS  Google Scholar 

  5. Çevik S, Timur S, Anik Ü (2012) Biocentri-voltammetry for the enzyme assay: a model study. RSC Advances 2:4299–4303

    Article  Google Scholar 

  6. Anik Ü, Çubukçu M, Çevik S, Timur S (2010) Usage of bismuth film electrode as biosensor transducer for alkaline phosphatase assay. Electroanalysis 22:1519–1523

    Article  CAS  Google Scholar 

  7. Merkoçi A, Anik U, Çevik S, Çubukçu M, Guix M (2010) Bismuth film combined with screen-printed electrode as biosensing platform for phenol detection. Electroanalysis 22:1429–1436

    Article  Google Scholar 

  8. Anik Ü, Cevik S, Timur S (2011) Bismuth film electrode as sensing platform for IgE-anti-IgE interactions. Electroanalysis 23:2379–2385

    Article  CAS  Google Scholar 

  9. Wang J, Kırgöz ÜA, Mo JW, Lu J, Kawde AN, Muck A (2001) Glassy carbon paste electrodes. Electrochem Commun 3:203–208

    Article  CAS  Google Scholar 

  10. Kırgöz ÜA, Timur S, Wang J, Telefoncu A (2004) Xanthine oxidase modified glassy carbon paste electrode. Electrochem Commun 6:913–916

    Article  Google Scholar 

  11. Kırgöz ÜA, Odacı D, Timur S, Merkoçi A, Pazarlıoğlu N, Telefoncu A, Alegret S (2006) Graphite epoxy composite electrodes modified with bacterial cells. Bioelectrochemistry 69:128–131

    Article  Google Scholar 

  12. Kırgöz ÜA, Odacı D, Timur S, Merkoçi A, Alegret S, Beşün N, Telefoncu A (2006) A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection. Anal Chim Acta 570:165–169

    Article  Google Scholar 

  13. Çubukcu M, Timur S, Anık Ü (2007) Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434–439

    Article  Google Scholar 

  14. Anik U, Cubukcu M (2008) Examination of the electroanalytic performance of carbon nanotube (CNT) modified carbon paste electrodes as xanthine biosensor transducers. Turk J Chem 32:711–719

    CAS  Google Scholar 

  15. Anik U, Cevik S (2009) Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchim Acta 166:209–213

    Article  CAS  Google Scholar 

  16. Anık Ü, Çevik S, Pumera M (2010) Effect of nitric acid “washing” procedure on electrochemical behavior of carbon nanotubes and glassy Carbon μ-particles. Nanoscale Res Lett 5:846–852

    Article  Google Scholar 

  17. Çevik S, Anık Ü (2010) Banana tissue-nanoparticle/nanotube based glassy carbon paste electrode biosensors for catechol detection. Sens Lett 8:667–671

    Article  Google Scholar 

  18. Çubukçu M, Ertaş FN, Anık Ü (2012) Metal/metal oxide micro/nanostructured modified GCPE for GSH detection. Curr Anal Chem 8:351–357

    Google Scholar 

  19. Yang M, Yang Y, Yang Y, Shen G, Yu R (2005) Microbiosensor for acetylcholine and choline based on electropolymerization/sol–gel derived composite membrane. Anal Chim Acta 530:205–211

    Article  CAS  Google Scholar 

  20. Xue W, Cui T (2008) A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles. Sensor Actuator B Chem 134:981–987

    Article  Google Scholar 

  21. Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M (2009) Amperometric biosensor based on enzymes immobilized in hybrid mesoporous membranes for the determination of acetylcholine. Enzyme Micro Tech 45:443–448

    Article  CAS  Google Scholar 

  22. Lopez MS, Perez JPH, Lopez-Cabarcos E, Lopez-Ruiz B (2007) Amperometric biosensors based on choline oxidase entrapped in polyacrylamide microgels. Electroanalysis 19:370–378

    Article  CAS  Google Scholar 

  23. Coldur F, Andac M, Isildak I (2010) Flow-injection potentiometric applications of solid state Li+ selective electrode in biological and pharmaceutical samples. J Solid State Electrochem 14:2241–2249

    Article  CAS  Google Scholar 

  24. Kırgöz ÜA, Timur S, Odacı D, Perez B, Alegret S, Merkoçi A (2007) Carbon nanotube composite as novel platform for microbial biosensor. Electoanalysis 19:893–898

    Article  Google Scholar 

  25. Doretti L, Ferrara D, Lora S, Schiavon F, Veronese MF (2000) Acetylcholine biosensor involving entrapment of acetylcholinesterase and poly(ethylene glycol)-modified choline oxidase in a poly(vinyl alcohol) cryogel membrane. Enzym Microb Technol 27:279–285

    Article  CAS  Google Scholar 

  26. Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M (2009) Amperometric biosensor based on enzymes immobilized in hybrid mesoporous membranes for the determination of acetylcholine. Enzym Microb Technol 45:443–448

    Article  CAS  Google Scholar 

  27. Houa S, Oub Z, Chenc Q, Wub B (2012) Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol–gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode. Biosens Bioelectron 33:44–49

    Article  Google Scholar 

Download references

Acknowledgments

The grant from The Technical and Scientific Council of Turkey (TUBİTAK) Project no: 109T885 and Mugla Sıtkı Kocman University BAP project no 12/08 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülkü Anik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çevik, S., Timur, S. & Anik, Ü. Biocentri-voltammetric biosensor for acetylcholine and choline. Microchim Acta 179, 299–305 (2012). https://doi.org/10.1007/s00604-012-0895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0895-1

Keywords

Navigation