Skip to main content
Log in

Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Urchin-like In2S3 nanostructures were functionalized with multi-walled carbon nanotubes (MWCNTs) and deposited on a glassy carbon electrode (GCE) to obtain a new kind of sensor for dopamine (DA). The new electrode was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry and differential pulse voltammetry. It is found that the current response toward DA is significantly enhanced compared to that of a bare GCE or a GCE modified with MWCNTs. The peak separation between DA and ascorbic acid (AA) is up to 225 mV. The new electrode also has improved selectivity for DA over AA compared to the bare electrode. The new DA sensor has a wide linear range (0.5–300 μM), high sensitivity (594.9 μA mM−1 cm−2) and low detection limit (0.1 μM). CNTs wrapped on urchin-like nanostructures remarkable improve its electrocatalytic activity and thus provide a promising strategy to develop excellent composite materials for electrochemical sensing.

SEM images of urchin-like In2S3 (A) and Multi-walled carbon nanotubes-functionalized urchin-like In2S3 nanostructure (B)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A 102:10023

    Article  CAS  Google Scholar 

  2. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A

    Article  CAS  Google Scholar 

  3. Chang JL, Wei GT, Zen JM (2011) Screen-printed ionic liquid/preanodized carbon electrode: effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem Commun 13:174

    Article  CAS  Google Scholar 

  4. Snowden ME, Unwin PR, Macpherson JV (2011) Single walled carbon nanotube channel flow electrode: hydrodynamic voltammetry at the nanomolar level. Electrochem Commun 13:186

    Article  CAS  Google Scholar 

  5. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  6. Xiao CH, Chu XC, Yang Y, Li X, Zhang XH, Chen JH (2011) Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens Bioelectron 26:2934

    Article  CAS  Google Scholar 

  7. Ali SR, Ma YF, Parajuli RR, Balogun Y, Lai WYC, He HX (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583

    Article  CAS  Google Scholar 

  8. Ciszewski A, Milczarek G (1999) Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal Chem 71:1055

    Article  CAS  Google Scholar 

  9. Jin GY, Zhang YZ, Cheng WX (2005) Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sensors Actuators B 107:528

    Article  Google Scholar 

  10. Kumar SA, Tang CF, Chen SM (2008) Poly(4-amino-1-1′-azobenzene-3, 4′-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta 74:860

    Article  CAS  Google Scholar 

  11. Zhang R, Jin GD, Chen D, Hu XY (2009) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors Actuators B Chem 138:174

    Article  Google Scholar 

  12. Huang JS, Liu Y, Hou HQ, You TY (2008) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron 24:632

    Article  CAS  Google Scholar 

  13. Ndangili PM, Arotiba OA, Baker PGL, Iwuoha EI (2010) A potential masking approach in the detection of dopamine on 3-mercaptopropionic acid capped ZnSe quantum dots modified gold electrode in the presence of interferences. J Electroanal Chem 643:77

    Article  CAS  Google Scholar 

  14. Shakkthivel P, Chen SM (2007) Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode. Biosens Bioelectron 22:1680

    Article  CAS  Google Scholar 

  15. Tang CF, Kumar SA, Chen SM (2008) Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules. Anal Biochem 380:174

    Article  CAS  Google Scholar 

  16. Wang YL, Nepal D, Geckeler KE (2005) Hollow porous carbon nanospheres with large surface area and stability, assembled from oxidized fullerenes. J Mater Chem 15:1049

    Article  Google Scholar 

  17. Shaidarova LG, Chelnokova IA, Romanova EI, Gedmina AV, Budnikov GK (2011) Joint voltammetric determination of dopamine and uric acid. Russ J Appl Chem 84:218

    Article  CAS  Google Scholar 

  18. Shaidarova LG, Chelnokova IA, Gedmina AV, Budnikov GK (2009) Simultaneous voltammetric determination of dopamine and ascorbic acid at an electrode modified with the gold-palladium binary system. J Anal Chem 64:36

    Article  CAS  Google Scholar 

  19. EI-Said WA, Lee JH, Oh BK, Choi JW (2010) 3-D nanoporous gold thin film for the simultaneous electrochemical determination of dopamine and ascorbic acid. Electrochem Commun 12:1756

    Article  Google Scholar 

  20. Ge PY, Du Y, Xu JJ, Chen HY (2009) Detection of dopamine based on the unique property of gold nanofilm. J Electroanal Chem 633:182

    Article  CAS  Google Scholar 

  21. Jia Z, Liu J, Shen YB (2007) Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid. Electrochem Commun 9:2739

    Article  CAS  Google Scholar 

  22. Sun D, Xie XF, Zhang HJ (2010) Surface effects of mesoporous silica modified electrode and application in electrochemical detection of dopamine. Colloid Surf B 75:88

    Article  CAS  Google Scholar 

  23. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450

    Article  CAS  Google Scholar 

  24. Deng SY, Jian GQ, Lei JP, Hu Z, Ju HX (2009) A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens Bioelectron 25:373

    Article  CAS  Google Scholar 

  25. Gao WC, Dong HF, Lei JP, Ji HX, Ju HX (2011) Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chem Commun 47:5220

    Article  CAS  Google Scholar 

  26. Wang J, Lin YH (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal Chem 27:619

    Article  Google Scholar 

  27. Du D, Wang MH, Qin YH, Lin YH (2010) One-step electrochemical deposition of Prussian Blue-multiwalled carbon nanotube nanocomposite thin-film: preparation, characterization and evaluation for H2O2 sensing. J Mater Chem 20:1532

    Article  CAS  Google Scholar 

  28. Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sensors Actuators B Chem 148:93

    Article  Google Scholar 

  29. Hocevar SB, Wang J, Deo RP, Musameh M, Ogorevc B (2005) Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17:417

    Article  CAS  Google Scholar 

  30. Moreno M, Arribas AS, Bermejo E, Chicharro M, Zapardiel A, Rodriguez MC, Jalit Y, Rivas GA (2010) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80:2149

    Article  CAS  Google Scholar 

  31. Dong XY, Mi XN, Zhao WW, Xu JJ, Chen HY (2011) CdS nanoparticles functionalized colloidal carbon particles: preparation, characterization and application for electrochemical detection of thrombin. Biosens Bioelectron 26:3654

    Article  CAS  Google Scholar 

  32. Yang ZJ, Ren YY, Zhang RC, Li J, Li HB, Huang XC, Hu XY, Xu Q (2011) Nanoflake-like SnS2 matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens Bioelectron 26:4337

    Article  CAS  Google Scholar 

  33. Wang QY, Yu K, Xu F, Wu J (2008) Synthesis and field-emission properties of In2O3 nanostructures. Mater Lett 62:2710

    Article  CAS  Google Scholar 

  34. Bai HX, Zhang LX, Zhang YC (2009) Simple synthesis of urchin-like In2S3 and In2O3 nanostructures. Mater Lett 63:823

    Article  CAS  Google Scholar 

  35. Baldrich E, Gómez R, Gabriel G, Muñoz FX (2011) Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection. Biosens Bioelectron 26:1876

    Article  CAS  Google Scholar 

  36. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366

    Article  CAS  Google Scholar 

  37. Wang AJ, Feng JJ, Li YF, Xi JL, Dong WJ (2010) In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim Acta 171:431

    Article  CAS  Google Scholar 

  38. Joshi P, Joshi HC, Sanghi SK, Kundu S (2010) Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Microchim Acta 169:383

    Article  CAS  Google Scholar 

  39. Wang YL, Peng W, Liu L, Tang M, Gao F, Li MG (2011) Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selective sensing of dopamine. Microchim Acta 174:41

    Article  CAS  Google Scholar 

  40. Chen PY, Vittal R, Nien PC, Ho KC (2009) Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion (R). Biosens Bioelectron 24:3504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by from National Natural Science Foundation of China (20875081, 21075107, 21005070), The Priority Academic Program Development of Jiangsu Higher Education Institution, Projects of the 863 Plan (2009AA0Z331), Postdoctoral Science Foundation of China (20110491462), Postdoctoral Science Foundation of Jiangsu Province (1101020B) and the Open Research Fund of State Key Laboratory of Bioelectronics of Southeast University (2011E13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanjun Yang or Xiaoya Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Huang, X., Li, J. et al. Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine. Microchim Acta 177, 381–387 (2012). https://doi.org/10.1007/s00604-012-0791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0791-8

Keywords

Navigation