Skip to main content
Log in

Direct analysis of biogenic amines in water matrix by modified capillary zone electrophoresis with 18-crown-6

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for the determination of the biogenic amines (BAs) spermine, spermidine, histamine, cadaverine, β-phenylethylamine, tyramine and tryptamine. It is based on capillary zone electrophoresis in the presence of 18-crown-6 (180 mM), and is making use of amperometric detection. Under optimized conditions, seven BAs could be well separated within 29 min at a separation voltage of 14 kV in a buffer solution of pH 3.6. The limits of detection for seven BAs are around 10 ng.mL−1 for standard mixtures. The method does not require preconcentration and derivatization steps, and thus provides an attractive alternative to quantitative multi-analysis of BAs in water samples.

Typical electropherogram of the standard mixture solution of seven bioactive amines based on modified capillary zone electrophoresis with 18-crown-6

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Önal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486

    Article  Google Scholar 

  2. Baker GB, Wong JTF, Coutts RT, Pasutto FM (1987) Simultaneous extraction and quantitation of several bioactive amines in cheese and chocolate. J Chromatogr A 392:317–331

    Article  CAS  Google Scholar 

  3. Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29:675–690

    Article  CAS  Google Scholar 

  4. Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231

    Article  CAS  Google Scholar 

  5. Bjeldanes LF, Schutz DE, Morris MM (1978) On the aetiology of scombroid poisoning: cadaverine potentiation of histamine toxicity in the guinea-pig. Food Cosmet Toxicol 16:157–159

    Article  CAS  Google Scholar 

  6. Leuschner RG, Kurthara M, Hammes WP (1999) Formation of biogenic amines by proteolytic enterococci during cheese ripening. J Sci Food Agric 79:1141–1144

    Article  CAS  Google Scholar 

  7. Valdes M, Gonzalez A, Calzon J, Diaz-Garcia M (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  CAS  Google Scholar 

  8. Lapa-Guimarães J, Pickova J (2004) New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A 1045:223–232

    Article  Google Scholar 

  9. Shalaby AR (1999) Simple, rapid and valid thin layer chromatographic method for determining biogenic amines in foods. Food Chem 65:117–121

    Article  CAS  Google Scholar 

  10. Awan MA, Fleet I, Thomas CLP (2008) Determination of biogenic diamines with a vaporization derivatisation approach using solid-phase microextraction gas chromatography-mass spectrometry. Food Chem 111:462–468

    Article  Google Scholar 

  11. Hwang BS, Wang JT, Choong YM (2003) A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chem 82:329–334

    Article  CAS  Google Scholar 

  12. Fernandes JO, Ferreira MA (2000) Combined ion-pair extraction and gas chromatography–mass spectrometry for the simultaneous determination of diamines, polyamines and aromatic amines in Port wine and grape juice. J Chromatogr A 886:183–195

    Article  CAS  Google Scholar 

  13. Saaid M, Saad B, Hashim NH, Mohamed Ali AS, Saleh MI (2009) Determination of biogenic amines in selected Malaysian food. Food Chem 113:1356–1362

    Article  CAS  Google Scholar 

  14. Yildirim HK, Uren A, Yucel U (2007) Evaluation of biogenic amines in organic and non-organic wines by HPLC-OPA derivatization. Food Technol Biotechnol 45:62–68

    CAS  Google Scholar 

  15. Mo Dugo G, Vilasi F, La Torre GL, Pellicano TM (2006) Reverse phase HPLC/DAD determination of biogenic amines as dansyl derivatives in experimental red wines. Food Chem 95:672–676

    Article  Google Scholar 

  16. Proestos C, Loukatos P, Komaitis M (2008) Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem 106:1218–1224

    Article  CAS  Google Scholar 

  17. Herrero M, Garcia-Canas V, Simo C, Cifuentes A (2010) Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 31:205–228

    Article  CAS  Google Scholar 

  18. Chiu TC, Lin YW, Huang YF, Chang HT (2006) Analysis of biologically active amines by CE. Electrophoresis 27:4792–4807

    Article  CAS  Google Scholar 

  19. Kvasnicka F (2007) Application of CE in hydrodynamically closed systems for analysis of bioactive compounds in food. Electrophoresis 28:3581–3589

    Article  CAS  Google Scholar 

  20. Lista AG, Arce L, Ríos A, Valcárcel M (2001) Analysis of solid samples by capillary electrophoresis using a gas extraction sampling device in a flow system. Anal Chim Acta 438:315–322

    Article  CAS  Google Scholar 

  21. Choy TMH, Jia L, Huie CW (2002) Investigation of the effects of halide ions on indirect UV detection in capillary zone electrophoresis. J Sep Sci 25:333–341

    Article  CAS  Google Scholar 

  22. Gross L, Yeung ES (1990) Indirect fluorometric detection of cations in capillary zone electrophoresis. Anal Chem 62:427–431

    Article  CAS  Google Scholar 

  23. Beard NP, de Mello AJ (2002) A polydimethylsiloxane/glass capillary electrophoresis microchip for the analysis of biogenic amines using indirect fluorescence detection. Electrophoresis 23:1722–1730

    Article  CAS  Google Scholar 

  24. Huang MF, Chang HT (2003) Indirect fluorescence of amines in capillary electrophoresis, using Cresyl Violet. J Liq Chromatogr Rel Technol 26:3387–3400

    Article  CAS  Google Scholar 

  25. Fekete A, Lahaniatis M, Lintelmann J, Schmitt-Kopplin P (2008) Determination of aliphatic low-molecular-weight and biogenic amines by capillary zone electrophoresis. In: Cregg JM (ed) Methods in molecular biology, Totowa, NJ, United States, 384(Capillary Electrophoresis), pp 65–91

  26. Chu QC, Guan YQ, Geng CH, Ye JN (2006) Miniaturized capillary electrophoresis with amperometric detection: fast separation and detection of bioactive amines. Anal Lett 39:729–740

    Article  CAS  Google Scholar 

  27. Sun XH, Yang XR, Wang EK (2003) Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection. J Chromatogr A 1005:189–195

    Article  CAS  Google Scholar 

  28. Wang QJ, Yu H, Li H, Ding F, He PG, Fang YZ (2003) Simultaneous determination of food-related biogenic amines and precursor amino acids by micellar electrokinetic capillary chromatography with electrochemical detection. Food Chem 83:311–317

    Article  CAS  Google Scholar 

  29. Kvasnicka F, Voldrich M (2006) Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. J Chromatogr A 1103:145–149

    Article  CAS  Google Scholar 

  30. Gong XY, Hauser PC (2006) Determination of different classes of amines with capillary zone electrophoresis and contactless conductivity detection. Electrophoresis 27:468–473

    Article  CAS  Google Scholar 

  31. Liu JF, Yang XR, Wang EK (2003) Direct tris(2,2′-bipyridyl)ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis. Electrophoresis 24:3131–3138

    Article  CAS  Google Scholar 

  32. Li M, Lee SH (2007) Determination of trimethylamine in fish by capillary electrophoresis with electrogenerated tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection. Luminiscence 22:588–593

    Article  CAS  Google Scholar 

  33. Wang JY, Jiang LM, Chu QC, Ye JN (2010) Residue analysis of melamine in milk product by micellar electrokinetic capillary chromatography with amperometric detection. Food Chem 121:215–219

    Article  CAS  Google Scholar 

  34. Chu QC, Fu L, Guan YQ, Ye JN (2005) Fast determination of sugars in coke and diet coke by miniaturized capillary electrophoresis with amperometric setection. J Sep Sci 28:234–238

    Article  CAS  Google Scholar 

  35. Liu YM, Cheng JK (2003) Separation of biogenic amines by micellar electrokinetic chromatography with on-line chemiluminescence detection. J Chromatogr A 1003:211–216

    Article  CAS  Google Scholar 

  36. Jia L, Chen SC, Cao YH, Zhang JH, Xia M, Liu Q, Liu QJ (2008) Determination of bioamines in water matrix by ion chromatography method. Environ Chem 27:823–825

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Foundation of China (No. 20875032), the Special Funds for the Development of Major Scientific Instruments and Equipment (No. 2011YQ15007205) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-cui Chu or Jian-nong Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 77.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Wl., Ge, Jy., Pan, Yl. et al. Direct analysis of biogenic amines in water matrix by modified capillary zone electrophoresis with 18-crown-6. Microchim Acta 177, 75–80 (2012). https://doi.org/10.1007/s00604-011-0755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0755-4

Keywords

Navigation