Skip to main content
Log in

Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.

A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Panke O, Kirbs A, Lisdat F (2007) Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosens Bioelectron 22:2656–2662

    Article  Google Scholar 

  2. Wang J (2002) Electrochemical nucleic acid biosensor. Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  3. Palecˇek E (2002) Past, present and future of nucleic acids electrochemistry. Talanta 56:809–819

    Article  Google Scholar 

  4. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  5. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    Article  CAS  Google Scholar 

  6. Benoit V, Steel A, Torres M, Yu YY, Yang HJ, Cooper J (2001) Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays. Anal Chem 73:2412–2420

    Article  CAS  Google Scholar 

  7. Zhang QR, Dai PP, Yang ZS (2011) Sensitive DNA-hybridization biosensors based on gold nanoparticles for testing DNA damage by Cd(II) ions. Microchim Acta 173:347–352

    Article  Google Scholar 

  8. Park EJ, Jin JH, Kim JH, Min NK (2011) Surface activation of plasma-patterned carbon nanotube based DNA sensing electrodes. Microchim Acta 174:231–238

    Article  CAS  Google Scholar 

  9. Jilbert AR (2000) In situ hybridization protocols for detection of viral DNA using radioactive and nonradioactive DNA probes. Meth Mol Biol 123:177–193

    CAS  Google Scholar 

  10. Barlet V, Cohard M, Thelu MA, Chaix MJ, Baccard C, Zarski JP, Seigneurin JM, Seigneurin J (1994) Quantitative detection of hepatitis B virus DNA in serum using chemiluminescence: comparison with radioactive solution hybridization assay. J Virol Meth 49:141–151

    Article  CAS  Google Scholar 

  11. Wei MY, Guo LH, Famouri P (2011) DNA biosensors based on metallo-intercalator probes and electrocatalytic amplification. Microchim Acta 172:247–260

    Article  CAS  Google Scholar 

  12. Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

  13. Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 11:2888–2895

    Article  Google Scholar 

  14. Zhu N, Cai H, He P, Fang Y (2003) Tris(2,2′-bipyridyl)cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization. Anal Chim Acta 481:181–189

    Article  CAS  Google Scholar 

  15. Zhu NN, Zhang AP, Wang QJ, He PG, Fang YZ (2004) Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal Chim Acta 510:163–168

    Article  CAS  Google Scholar 

  16. Zhang KY, Zhang YZ (2010) Lable-free electrochemical DNA sensor based on gold nanoparticles/poly(neutral red) modified electrode. Electroanalysis 22:673–679

    Article  CAS  Google Scholar 

  17. Xu Y, Jiang Y, Yang L, He PG, Fang YZ (2005) Direct electrochemical detection of oligonucleotide hybridization on poly(thionine) film. Chin J Chem 23:1665–1670

    Article  CAS  Google Scholar 

  18. Korri-Youssoufi H, Makrouf B (2002) Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole. Anal Chim Acta 469:85–92

    Article  CAS  Google Scholar 

  19. Cha J, Han JI, Choi Y, Yoon DS et al (2003) DNA hybridization electrochemical sensor using conducting polymer. Biosens Bioelectron 18:1241–1247

    Article  CAS  Google Scholar 

  20. Peng H, Soeller C, Vigar N, Kilmartin PA, Cannell MB, Bowmaker GA, Cooney RP, Travas-Sejdic J (2005) Label-free electrochemical DNA sensor based on functionalized conducting copolymer. Biosens Bioelectron 20:1821–1828

    Article  CAS  Google Scholar 

  21. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  22. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778

    Article  CAS  Google Scholar 

  23. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 82:543–549

    Article  CAS  Google Scholar 

  24. Wang QX, Zheng MX, Shi JL, Gao F, Gao F (2011) Electrochemical oxidation of native double-stranded DNA on a graphene-modified glassy carbon electrode. Electroanalysis 23:915–920

    Article  CAS  Google Scholar 

  25. Wang YL, Peng W, Liu L, Tang M, Gao F, Li MG (2011) Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selectively sensing of dopamine. Microchim Acta 174:41–46

    Article  CAS  Google Scholar 

  26. Yin ZJ, Wu JJ, Yang ZS (2010) A sensitive mercury (II) sensor based on CuO nanoshuttles/poly(thionine) modified glassy carbon electrode. Microchim Acta 170:307–312

    Article  CAS  Google Scholar 

  27. Zhao K, Song HY, Zhuang SQ, Dai LM, He PG, Fang YZ (2007) Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochem Commun 9:65–70

    Article  CAS  Google Scholar 

  28. Gao Q, Cui XQ, Yang F, Ma Y, Yang XR (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosens Bioelectron 19:277–282

    Article  CAS  Google Scholar 

  29. Owino JHO, Arotiba OA, Hendricks N, Songa EA, Jahed N, Waryo TT, Ngece RF, Baker PGL, Iwuoha EI (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors 8:8262–8274

    Article  CAS  Google Scholar 

  30. Ou CF, Yuan R, Chai YQ, Tang MY, Chai R, He XL (2007) A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles–multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Anal Chim Acta 603:205–213

    CAS  Google Scholar 

  31. Yang R, Ruan CM, Dai WL, Deng JQ, Kong JL (1999) Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochim Acta 44:1585–1596

    Article  CAS  Google Scholar 

  32. Wei Q, Mao KX, Wu D, Dai YX, Yang J, Du B, Yang MH, Li H (2010) A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sensor Actuator B 149:314–318

    Article  Google Scholar 

  33. Peterson AW, Heaton RJ, Georgiadis RM (2005) The effect of surface probe density on DNA hybridization. Nuclic Acids Res 29:5163–5168

    Article  Google Scholar 

  34. Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580

    Article  CAS  Google Scholar 

  35. Niu SY, Zhao M, Ren R, Zhang SS (2009) Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using manganese(II)–Schiff base complex as hybridization indicator. J Inorg Biochem 103:43–49

    Article  CAS  Google Scholar 

  36. Ma HY, Zhang LP, Pan Y, Zhang KY, Zhang YZ (2008) A novel electrochemical DNA biosensor fabricated with layer-by-layer covalent attachment of multiwalled carbon nanotubes and gold nanoparticles. Electroanalysis 20:1220–1226

    Article  CAS  Google Scholar 

  37. Wang J, Zhang SJ, Zhang YZ (2010) Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(L-lysine) modified glassy carbon electrode. Anal Biochem 396:304–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Nature Science Foundation of China (No. 20675002), which financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Huang, L. Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene. Microchim Acta 176, 463–470 (2012). https://doi.org/10.1007/s00604-011-0742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0742-9

Keywords

Navigation