Skip to main content
Log in

Electrochemical sensor for monitoring the photodegradation of catechol based on DNA-modified graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have immobilized DNA on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical biosensor for catechol. Compared to carbon nanotubes, the use of GO dramatically improved the electrooxidative current of the guanine and adenine moieties in DNA but retained the low background current of unmodified GCEs. Factors such as DNA adsorption time, DNA concentration and pH of solution were investigated to optimize experimental conditions. In the presence of catechol, the voltammetric response to DNA was inhibited due to the interaction between DNA and catechol. The response to adenine is linearly proportional to the concentration of catechol in the range from 1.0 × 10−6 to 1.0 × 10−4 mol·L−1. If catechol is degraded by the combined action of UV light and hydrogen peroxide, the response to DNA is restored. Thus, the modified electrode can act as an efficient biosensor for monitoring the degradation of catechol.

GO dramatically improved the electrooxidative current of the guanine and adenine moieties in DNA but retained the low background current of unmodified GCEs. While the DNA/GO-modified electrode was applied to monitor catechol, it showed sensitive response to catechol before and after photodegradation treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fojta M (2002) Electrochemical sensors for DNA interactions and damage. Electroanalysis 14:1449

    Article  CAS  Google Scholar 

  2. Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta 609:139

    Article  CAS  Google Scholar 

  3. Hashimoto K, Ito K, Ishimori Y (1994) Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem 66:3830

    Article  CAS  Google Scholar 

  4. Cai H, Wang YQ, He PG, Fang YZ (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 469:165

    Article  CAS  Google Scholar 

  5. Wang J, Xu DK, Erdem A, Polsky R, Salazar MA (2002) Genomagnetic electrochemical assays of DNA hybridization. Talanta 56:931

    Article  CAS  Google Scholar 

  6. Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C, Chicharro M, Farias PAM, Valera FS, Grant DH, Ozsoz M, Flair MN (1997) DNA electrochemical biosensors for environmental monitoring. Anal Chim Acta 347:1

    Article  CAS  Google Scholar 

  7. Lucarelli F, Palchetti I, Marrazza G, Mascini M (2002) Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater samples. Talanta 56:949

    Article  CAS  Google Scholar 

  8. Chiti G, Marrazza G, Mascini M (2001) Electrochemical DNA biosensor for environmental monitoring. Anal Chim Acta 427:155

    Article  CAS  Google Scholar 

  9. Min JH, Baeumner AJ (2002) Highly sensitive and specific detection of viable escherichia coli in drinking water. Anal Biochem 303:186

    Article  CAS  Google Scholar 

  10. Wang J, Rivas G, Luo DB, Cai XH, Valera FS, Dontha N (1996) DNA-modified electrode for the detection of aromatic amines. Anal Chem 68:4365

    Article  CAS  Google Scholar 

  11. Wang J, Ozsoz M, Cai XH, Rivas G, Shiraishi H, Grant DH, Chicharro M, Fernandes J, Palecek E (1998) Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem Bioenerg 45:33

    Article  CAS  Google Scholar 

  12. Marrazza G, Chianella I, Mascini M (1999) Disposable DNA electrochemical biosensors for environmental monitoring. Anal Chim Acta 387:297

    Article  CAS  Google Scholar 

  13. Rodriguez M, Bard AJ (1990) Electrochemical studies of the interaction of metal chelates with DNA. 4. Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris (2,2′-bipyridine) osmium(II) with DNA. Anal Chem 62:2658

    Article  CAS  Google Scholar 

  14. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (III) and iron (II) with 1,10-Phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901

    Article  CAS  Google Scholar 

  15. Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010

    Article  CAS  Google Scholar 

  16. Yang XY, Lu YH, Ma YF, Liu ZF, Du F, Chen YS (2007) DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene. Biotechnol Lett 29:1775

    Article  CAS  Google Scholar 

  17. Hu CG, Zhang YY, Bao G, Zhang YL, Liu ML, Wang ZL (2005) DNA functionalized single-walled carbon nanotubes for electrochemical detection. J Phys Chem B 109:20072

    Article  CAS  Google Scholar 

  18. Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3:597

    Article  CAS  Google Scholar 

  19. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291

    Article  CAS  Google Scholar 

  20. Monk DJ, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931

    Article  CAS  Google Scholar 

  21. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614

    Article  CAS  Google Scholar 

  22. Deiss F, Sojic N, White DJ, Stoddart PR (2010) Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal Bioanal Chem 396:53

    Article  CAS  Google Scholar 

  23. Zheng YQ, Yang CZ, Pu WH, Zhang JD (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21

    Article  CAS  Google Scholar 

  24. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  25. Wang Y, Wan Y, Zhang D (2010) Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem Commun 12:187

    Article  CAS  Google Scholar 

  26. Li J, Guo SJ, Zhai YM, Wang EK (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085

    Article  CAS  Google Scholar 

  27. Xu YX, Bai H, Hong WJ, Li C, Shi GQ (2009) Chemically converted graphene induced molecular flattening of 5,10,15,20-Tetrakis (1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(II) ions. J Am Chem Soc 131:13490

    Article  CAS  Google Scholar 

  28. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  29. Wang Y, Lu J, Tang LH, Chang HX, Li JH (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81:9710

    Article  CAS  Google Scholar 

  30. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Yan LL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf, B Biointerfaces 82:543

    Article  CAS  Google Scholar 

  31. Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82:7387

    Article  CAS  Google Scholar 

  32. Hummers W, Offeman JR (1958) Preparation of graphitic oxide. J Am Chem Soc 80:133

    Article  Google Scholar 

  33. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771

    Article  CAS  Google Scholar 

  34. Zuo XL, He SJ, Li D, Peng C, Huang Q, Song SP, Fan CH (2010) Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936

    Article  CAS  Google Scholar 

  35. Chen WF, Yan LF, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146

    Article  CAS  Google Scholar 

  36. Zhang YP, Li HB, Pan LK, Lu T, Sun Z (2009) Capacitive behavior of graphene-ZnO composite film for supercapacitors. J Electroanal Chem 634:68

    Article  CAS  Google Scholar 

  37. Lucarelli F, Kicela A, Palchetti I, Marrazza G, Mascini M (2002) Electrochemical DNA biosensor for analysis of wastewater samples. Bioelectrochemistry 58:113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20977037) and the Opening Foundation of State Key Laboratory of Chemo/Biosensing and Chemometrics (Grant No. 200908). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology for the use of SEM and TEM equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdong Zhang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., Borowiec, J., Zhu, L. et al. Electrochemical sensor for monitoring the photodegradation of catechol based on DNA-modified graphene oxide. Microchim Acta 173, 439–443 (2011). https://doi.org/10.1007/s00604-011-0580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0580-9

Keywords

Navigation