Skip to main content
Log in

An innovative electrochemical approach for voltammetric determination of levodopa using gold nanoparticles doped on titanium dioxide nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Catalytic nanotubes made from titanium dioxide (TiO2-NTs) and covered with gold nanoparticles (Au-NPs) were prepared via galvanic deposition of the Au-NPs on the TiO2-NTs. The morphology and surface characteristics of the resulting electrodes were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicated that the Au-NPs were homogeneously deposited on the surface of TiO2-NTs which consist of individual tubes of about 40–80 nm in diameter. The AuNPs with a size of 80–100 nm are well-dispersed on the surface of the TiO2-NTs. The electro-catalytic activity of the electrodes towards the electro-oxidation of levodopa was studied by cyclic voltammetry, differential puls voltammetry. The results showed that the electrodes exhibit a considerably higher activity toward the oxidation of levodopa. The oxidation peak current linearly depends on the concentration of levodopa in the 10 to 70 μM concentration range. Levodopa was determined by the method in pharmaceutical preparations, and results were found to be satisfactory.

Comparison of cyclic voltammograms of Au‐TiO2‐NTs/Ti and a flat gold electrode for determination levodopa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weiner WJ (2002) Parkinson’s disease: diagnosis and clinical management. Medical Publishing, New York, pp 195–205

    Google Scholar 

  2. Cedarbaum JM, Williamson R, Kutt H (1987) Simultaneous determination of levodopa, its metabolites and carbidopa in clinical samples. J Chromatogr 415:393–399

    Article  CAS  Google Scholar 

  3. Tolokán A, Klebovich I, Balogh-Nemes K, Horvai G (1997) Automated determination of levodopa and carbidopa in plasma by high-performance liquid chromatography-electrochemical detection using an on-line flow injection analysis sample pretreatment unit. J Chromatogr B Biomed Sci Appl 698:201–207. doi:10.1016/S0378-4347(97)00288-0

    Article  Google Scholar 

  4. Teixeira MFS, Marcolino-Júnior LH, Fatibello-Filho O, Dockal ER, Bergamini MF (2007) An electrochemical sensor for l-dopa based on oxovanadium-salen thin film electrode applied flow injection system. Sens Actuators, B 122:549–555. doi:10.1016/j.snb.2006.06.032

    Article  Google Scholar 

  5. Coello J, Maspoch S, Villegas N (2000) Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least squares calibration. Talanta 53:627–637. doi:10.1016/S0039-9140(00)00539-7

    Article  CAS  Google Scholar 

  6. Zhao S, Bai W, Wang B, He M (2007) Determination of levodopa by capillary electrophoresis with chemiluminescence detection. Talanta 73:142–146. doi:10.1016/j.talanta.2007.03.023

    Article  CAS  Google Scholar 

  7. Satheesh Babu TG, Ramachandran T, Nair B (2010) Single step modification of copper electrode for the highlysensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49–55. doi:10.1007/s00604-010-0306-4

    Article  Google Scholar 

  8. Zhang N, Wang G, Gu A, Feng Y, Fang B (2010) Fabrication of prussian blue/multi-walled carbon nanotubesmodified electrode for electrochemical sensing of hydroxylamine. Microchim Acta 168:129–134. doi:10.1007/s00604-009-0274-8

    Article  CAS  Google Scholar 

  9. Wu K, Hu S (2004) Electrochemical study and selective determination of dopamine at a multi-wall carbon nanotube-nafion film coated glassy carbon electrode. Microchim Acta 144:131–137. doi:10.1007/s00604-003-0103-4

    Article  CAS  Google Scholar 

  10. Klink MJ, Crouch AM (2009) Preparation of low temperature nano-structured ZnO and RhO2 on titanium substrates, and evaluation for phenolelectro-catalytic oxidation. Microchim Acta 166:27–33. doi:10.1007/s00604-009-0157-z

    Article  CAS  Google Scholar 

  11. Shahrokhian S, Amiri M (2007) Multi-walled carbon nanotube paste electrode for selectivevoltammetric detection of isoniazid. Microchim Acta 157:149–158. doi:10.1007/s00604-006-0665-z

    Article  CAS  Google Scholar 

  12. Jo S, Jeong H, Bae SR, Jeon S (2008) Modified platinum electrode with phytic acid and single-walled carbon nanotube: application to the selective determination of dopamine in the presence of ascorbic and uric acids. Microchem J 88:1–6. doi:10.1016/j.microc.2007.08.005

    Article  CAS  Google Scholar 

  13. Zhao J, Yu J, Wang F, Hu S (2007) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode, and its application to glucose sensing. Microchim Acta 156:277–282. doi:10.1007/s00604-006-0631-9

    Article  Google Scholar 

  14. Wang F, Hu S (2009) electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22. doi:10.1007/s00604-009-0136-4

    Article  CAS  Google Scholar 

  15. Wang C, Wang G, Fang B (2009) Electrocatalytic oxidation of bilirubinat ferrocenecarboxamide modified MWCNT–goldnanocomposite electrodes. Microchim Acta 164:113–118. doi:10.1007/s00604-008-0041-2

    Article  CAS  Google Scholar 

  16. Shahrokhian S, Asadian E (2009) Electrochemical determination of L-dopa in the presence of ascorbicacid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J Electroanal Chem 636:40–46. doi:10.1016/j.jelechem.2009.09.010

    Article  CAS  Google Scholar 

  17. Daneshgara P, Norouzi P, Ganjali MR, Ordikhani-Seyedlara A, Eshraghi H (2009) A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method. Colloids Surf, B 68:27–32. doi:10.1016/j.colsurfb.2008.09.019

    Article  Google Scholar 

  18. Bergamini MF, Santos L, Stradiotto NR, Zanoni MVB (2005) A disposable electrochemical sensor for the rapid determination of levodopa. J Pharm Biomed Anal 39:54–59. doi:10.1016/j.jpba.2005.03.014

    Article  CAS  Google Scholar 

  19. Hosseini MG, Sajjadi SAS, Momeni MM (2007) Electrodeposition of platinum metal on titanium and anodised titanium from P salt:application to electro-oxidation of glycerol. Surf Eng 23:419–424. doi:10.1179/174329407X260582

    Article  CAS  Google Scholar 

  20. Hosseini MG, Momeni MM (2010) Gold particles supported on self-organized nanotubular TiO2 matrix as highly active catalysts for electrochemicaloxidation of glucose. J Solid State Electrochem 14:1109–1115. doi:10.1007/s10008-009-0920-4

    Article  CAS  Google Scholar 

  21. Hosseini MG, Momeni MM, Faraji M (2010) Electrochemical fabrication of polyaniline films containing gold nanoparticles deposited on titanium electrode for electro-oxidation of ascorbic acid. J Mater Sci 45:2365–2371. doi:10.1007/s10853-009-4202-4

    Article  CAS  Google Scholar 

  22. Hosseini MG, Momeni MM, Faraji M (2010) An innovative approach to electro-oxidation of dopamine on titanium dioxide nanotubes electrode modified by gold particles. J Appl Electrochem 40:1421–1427. doi:10.1007/s10800-010-0119-5

    Article  CAS  Google Scholar 

  23. Hosseini MG, Momeni MM (2010) Silver nanoparticles dispersed in polyaniline matrixes coatedon titanium substrate as a novel electrode for electro-oxidation of hydrazine. J Mater Sci 45:3304–3310. doi:10.1007/s10853-010-4347-1

    Article  CAS  Google Scholar 

  24. Zhang L, Chen G, Hu Q, Fang Y (2001) Separation and determination of levodopa and carbidopa in composite tablets by capillary zone electrophoresis with amperometric detection. Anal Chim Acta 431:287–292. doi:S0003-2670(00)01327-1

    Article  CAS  Google Scholar 

  25. Tapan NA, Mustain WE, Gurau B, Sandí G, Prakash J (2004) Investigation of methanol oxidation electrokinetics on Pt using the asymmetric electrode. J New Mater Electrochem Syst 7:281–286

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Iranian Nanotechnology Society and the Office of Vice Chancellor in Charge of Research of University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Ghasem Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, M.G., Faraji, M., Momeni, M.M. et al. An innovative electrochemical approach for voltammetric determination of levodopa using gold nanoparticles doped on titanium dioxide nanotubes. Microchim Acta 172, 103–108 (2011). https://doi.org/10.1007/s00604-010-0471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0471-5

Keywords

Navigation