Skip to main content
Log in

Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Acrylic acid was first electropolymerized on the surface of a gold electrode. Then, polyaniline (PANI) was electrodeposited on the poly(acrylic acid) (PAA) network to give a PANI–PAA composite film. Scanning electron microscopy and electrochemical studies confirmed the formation of PANI–PAA composite which exhibited excellent electroactivity over a wide pH range. The electro-oxidation of ascorbic acid (AA) was studied in detail. The modified electrode exhibits significantly reduced oxidation overpotential. The response towards AA is linear in the range 1.0 μM to 9.3 mM (R = 0.9997, n = 33) at a potential of 0.1 V (vs. SCE). The sensitivity is 207 μA mM-1 cm-2, and the detection limit is 1.0 μM (S/N = 3). Interferences by uric acid and dopamine are negligible. The electrode thus enables sensitive and selective determination of AA, with a performance superior to many other PANI–based ascorbate sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geniès EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: A historical survey. Synth Met 36:139–182

    Article  Google Scholar 

  2. Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Conjugated polymer films for gas separations. Science 252:1412–1415

    Article  CAS  Google Scholar 

  3. Yeh JM, Liou SJ, Lai CY, Wu PC, Tsai TY (2001) Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline–clay nanocomposite materials. Chem Mater 13:1131–1136

    Article  CAS  Google Scholar 

  4. Diaz AF, Login JA (1980) Electroactive polyaniline film. J Electroanal Chem 111:111–114

    Article  CAS  Google Scholar 

  5. Yue J, Epstein AJ (1990) Synthesis of self-doped conducting polyaniline. J Am Chem Soc 112:2800–2801

    Article  CAS  Google Scholar 

  6. Yang YF, Mu SL (2008) Synthesis and high electrochemical activity of poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid). Electrochim Acta 54:506–512

    Article  CAS  Google Scholar 

  7. Zhang L, Lian JY (2007) Electrochemical synthesis of copolymer of aniline and o-aminophenol and its use to the electrocatalytic oxidation of ascorbic acid. J Electroanal Chem 611:51–59

    Article  CAS  Google Scholar 

  8. Zhang L (2007) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalenesulfonic acid. Electrochim Acta 52:6969–6975

    Article  CAS  Google Scholar 

  9. Bartlett PN, Simon E (2000) Poly(aniline)–poly(acrylate) composite films as modified electrodes for the oxidation of NADH. Phys Chem Chem Phys 2:2599–2606

    Article  CAS  Google Scholar 

  10. Kanungo M, Kumar A, Contractor AQ (2003) Microtubule sensors and sensor array based on polyaniline synthesized in the presence of poly(styrene sulfonate). Anal Chem 75:5673–5679

    Article  CAS  Google Scholar 

  11. Raitman OA, Katz E, Bückmann AF, Willner I (2002) Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 124:6487–6496

    Article  CAS  Google Scholar 

  12. Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111:7676–7681

    Article  CAS  Google Scholar 

  13. Li WG, McCarthy PA, Liu DG, Huang JY, Yang SC, Wang HL (2002) Toward understanding and optimizing the template-guided synthesis of chiral polyaniline nanocomposites. Macromolecules 35:9975–9982

    Article  CAS  Google Scholar 

  14. Tang YH, Cao Y, Wang SP, Shen GL, Yu RQ (2009) Surface attached-poly(acrylic acid) network as nanoreactor to in-situ synthesize palladium nanoparticles for H2O2 sensing. Sens Actuators B 137:736–740

    Article  Google Scholar 

  15. Li D, Jiang Y, Li C, Wu Z, Chen X, Li Y (1999) Self-assembly of polyaniline/polyacrylic acid films via acid-base reaction induced deposition. Polymer 40:7065–7070

    Article  CAS  Google Scholar 

  16. May JM, Qu ZC, Whitesell RR (1995) Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochem 34:12721–12728

    Article  CAS  Google Scholar 

  17. Núñez-Delicado E, Sánchez–Ferrer A, García–Carmona F (1997) Cyclodextrins as secondary antioxidants: Synergism with ascorbic acid. J Agric Food Chem 45:2830–2835

    Article  Google Scholar 

  18. Domínguez M, Aldaz A, Sánchez–Burgos F (1976) Electro-oxidation mechanism of D-araboascorbic acid on a mercury drop electrode. J Electroanal Chem 68:345–354

    Article  Google Scholar 

  19. Karabinas P, Jannakoudakis D (1984) Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions. J Electroanal Chem 160:159–167

    Article  CAS  Google Scholar 

  20. Rueda M, Aldaz A, Sanchez-Burgos F (1978) Oxidation of L-ascorbic acid on a gold electrode. Electrochim Acta 23:419–424

    Article  CAS  Google Scholar 

  21. Casella IG, Guascito MR (1997) Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis 9:1381–1386

    Article  CAS  Google Scholar 

  22. Ribeiro ES, Kubota LT (2006) Immobilization of hexacyanoferrate on a gold self-assembled monolayer, and its application as a sensor for ascorbic acid. Microchim Acta 154:303–308

    Article  CAS  Google Scholar 

  23. Zhang J, Deng PH, Feng YL, Kuang YF, Yang JJ (2004) Electrochemical determination of ascorbic acid at γ–MnO2 modified carbon black microelectrodes. Microchim Acta 147:279–282

    CAS  Google Scholar 

  24. Hu ZA, Shang XL, Yang YY, Kong C, Wu HY (2006) The electrochemical synthesis of polyaniline/polysulfone composite films and electrocatalytic activity for ascorbic acid oxidation. Electrochim Acta 51:3351–3355

    Article  CAS  Google Scholar 

  25. Zhang L, Zhang CH, Lian JY (2008) Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode and its use for the simultaneous determination of ascorbic acid and uric acid. Biosens Bioelectron 24:690–695

    Article  Google Scholar 

  26. Katz E, de Lacey AL, LG FJ, Palacios JM, Fernandez VM (1993) Covalent binding of viologen to electrode surfaces coated with poly(acrylic acid) formed by electropolymerization of acrylate ions: I. Electrode preparation and characterization. J Electroanal Chem 358:247–259

    Article  CAS  Google Scholar 

  27. Katz E, Willner I (2003) A biofuel cell with electrochemically switchable and tunable power output. J Am Chem Soc 125:6803–6813

    Article  CAS  Google Scholar 

  28. Sheeney–Haj–Ichia L, Cheglakov Z, Willner I (2004) Electroswitchable photoelectrochemistry by Cu2+–polyacrylic acid/CdS-nanoparticle assemblies. J Phys Chem B 108:11–15

    Article  Google Scholar 

  29. Genies EM, Tsintavis C (1986) Electrochemical behaviors, chronocoulometric and kinetic study of the redox mechanism of polyaniline deposits. J Electroanal Chem 200:127–145

    Article  CAS  Google Scholar 

  30. Chen WC, Wen LM, Gopalan A (2001) Electrochemical and spectroelectrochemical evidences for copolymer formation between 2-aminodiphenylamine and aniline. J Electrochem Soc 148:E427–E434

    Article  CAS  Google Scholar 

  31. Mirmohseni A, Wallace GG (2006) Preparation and characterization of processable electroactive polyaniline–polyvinyl alcohol composite. Polymer 44:3523–3528

    Article  Google Scholar 

  32. Karyakin AA, Strakhora AK, Yatsimirsdsky AK (1994) Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions: Electropolymerization of substituted anilines. J Electroanal Chem 371:259–265

    Article  CAS  Google Scholar 

  33. Ammbrosi A, Morrin A, Smyth MR, Killard AJ (2008) The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal Chim Acta 609:37–43

    Article  Google Scholar 

  34. Zhi ZW, Wen KX, Feng JS, Gao SJ, Sheng YD, Bin F (2006) Electrochemical characteristics and catalytic activity of polyaniline doped with ferrocene perchlorate. J Appl Polym Sci 102:5633–5639

    Article  Google Scholar 

  35. Xu JJ, Zhou DM, Chen HY (1998) Amperometric determination of ascorbic acid at a novel self-doped polyaniline modified microelectrode. Fres J Anal Chem 362:234–238

    Article  CAS  Google Scholar 

  36. Sun JJ, Zhou DM, Fang HQ, Chen HY (1998) The electrochemical copolymerization of 3, 4-dihydroxybenzoic acid and aniline at microdisk gold electrode and its amperometric determination for ascorbic acid. Talanta 45:851–856

    Article  CAS  Google Scholar 

  37. Zhang L, Dong SJ (2004) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem 568:189–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2009CB421601), the National Natural Science Foundation of China (20704011) and the Hunan Natural Science Foundation (09JJ3027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Pan, K., Wang, X. et al. Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim Acta 168, 231–237 (2010). https://doi.org/10.1007/s00604-009-0286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0286-4

Keywords

Navigation