Skip to main content
Log in

Prediction of Uniaxial Compressive Strength and Elastic Modulus of Migmatites by Microstructural Characteristics Using Artificial Neural Networks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In this study, several artificial neural network (ANN) models were developed with the help of microstructural characteristics to predict uniaxial compressive strength (UCS) and elastic modulus (E) of migmatites. To this end, 51 migmatite samples were prepared and for each sample some microstructural characteristics along with UCS and E were determined. A semi-automatic technique was implemented to quantify twenty microstructural characteristics including mineral size (area, perimeter, equivalent circular diameter, minimum Feret diameter, maximum Feret diameter), mineral shape (aspect ratio, orientation, compactness, roundness, rectangularity, solidity, convexity, concavity, form factor), fabric coefficients (index of interlocking, index of grain size homogeneity), mineral contents (quartz content, feldspar content), and mineralogical indices (saturation index, and coloration index) based on digital imaging of representative parts of thin sections of samples. Area, orientation, concavity, index of interlocking, feldspar content and saturation index were chosen as inputs of the prediction models. Here, 6, 10 and 10 ANN models were developed with 5, 4 and 3 inputs, respectively, using these microstructural characteristics. Bayesian regularization was employed for training the models to improve the generalization capacity of the models. From these models, the model with orientation, index of interlocking and feldspar content as inputs was selected for producing prediction charts. For this model, mean squared error and correlation coefficient were obtained as 0.0148 and 0.854 for training data, and 0.0143 and 0.860 for test data, respectively. The proposed models and prediction charts in this study can show high prediction capability, given that they are used for similar types of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acar MC, Kaya B (2020) Models to estimate the elastic modulus of weak rocks based on least square support vector machine. Arab J Geosci 13:590. https://doi.org/10.1007/s12517-020-05566-6

    Article  Google Scholar 

  • Ahmadi Khalaji A, Valizade MV, Esmaeili D (2008) Petrology and geochemistry of the granitoid massif of boroujerd. J Sci Univ Tehran 33:1–14

    Google Scholar 

  • Ajiboye AR, Abdullah-Arshah R, Qin H, Isah-Kebbe H (2015) Evaluating the effect of dataset size on predictive model using supervised learning technique. Int J Softw Eng Comput Sci. https://doi.org/10.15282/ijsecs.1.2015.6.0006

    Article  Google Scholar 

  • Aligholi S, Lashkaripour GR, Ghafoori M (2019) Estimating engineering properties of igneous rocks using semi-automatic petrographic analysis. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-018-1305-7

    Article  Google Scholar 

  • ASTM D4543-01 (2001) Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. ASTM International, West Conshohocken, PA

  • Babakhani AR, Ghalamghash J (1990) Geological map of Iran, 1:100000 series, sheet 5463. Geol. Surve. Iran, Tehran, Iran

  • Baharifar A, Moinevaziri H, Bellon H, Pique A (2004) The crystalline complexes of Hamedan (Sanandaj Sirjan zone, western Iran): Metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geosci 336:1443–1452. https://doi.org/10.1016/j.crte.2004.09.014

    Article  Google Scholar 

  • Basheer IA (2000) Selection of methodology for neural network modeling of constitutive hystereses behavior of soils. Comput Aided Civ Infrastruct Eng 15:440–458. https://doi.org/10.1111/0885-9507.00206

    Article  Google Scholar 

  • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Method 43:3–31. https://doi.org/10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  • Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int J Rock Mech Min Sci 47:823–828. https://doi.org/10.1016/j.ijrmms.2010.04.006

    Article  Google Scholar 

  • Burden F, Winkler D (2009) Bayesian regularization of neural networks. In: Livingstone DJ (ed) Artificial neural networks: methods and applications. Humana press, Totowa, pp 23–42

    Google Scholar 

  • Choudhury TA, Hosseinzadeh N, Berndt CC (2012) Improving the generalization ability of an artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process. J Therm Spray Tech 21:935–949. https://doi.org/10.1007/s11666-012-9775-9

    Article  Google Scholar 

  • Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 23:800–810. https://doi.org/10.1109/34.946985

    Article  Google Scholar 

  • Dreyer W (1973) The science of rock mechanics. Part 1: the strength properties of rocks. Trans Tech Publications, Ohio

    Google Scholar 

  • Eghlimi B (1998) Geological map of Iran, 1:100000 series, sheet 5759. Geol. Surve. Iran, Tehran, Iran

  • Fambrini F, Iano Y, Caetano DG, Rodriguez AAD, Moya C, Carrara E, Arthur R, Cabello FC, Zubem JV, Cura LMDV, Filho JBD, Campos JR, Saito JH (2018) GPU cuda jseg segmentation algorithm associated with deep learning classifier for electrical network images identification. Procedia Comput Sci 126:557–565. https://doi.org/10.1016/j.procs.2018.07.290

    Article  Google Scholar 

  • Fazlnia A, Schenk V, Straaten F, Mirmohammadi M (2009) Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz. Iran Lithos 112:413–433. https://doi.org/10.1016/j.lithos.2009.03.047

    Article  Google Scholar 

  • Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72. https://doi.org/10.1016/j.engappai.2003.11.006

    Article  Google Scholar 

  • Gupta AS, Rao KS (1998) Index properties of weathered rocks: inter-relationships and applicability. Bull Eng Geol Environ 57:161–172. https://doi.org/10.1007/s100640050032

    Article  Google Scholar 

  • Gupta V, Sharma R (2012) Relationship between textural, petrophysical and mechanical properties of quartzites: a case study from northwestern Himalaya. Eng Geol 135–136:1–9. https://doi.org/10.1016/j.enggeo.2012.02.006

    Article  Google Scholar 

  • Hagan MT, Demuth BD, Beale MH, De Jesús O (2014) Generalization. In: Hagan MT, Demuth BD, Beale MH, De Jesús O (eds) Neural Network Design, 2nd edn. Oklahoma State University, Stillwater

    Google Scholar 

  • Hajialioghli R, Moazzen M, Jahangiri A, Oberhansli R, Mocek B, Altenberger U (2011) Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran. Geol Mag 148:250–268. https://doi.org/10.1017/S0016756810000683

    Article  Google Scholar 

  • Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. First IEEE International Conference on Neural Networks. San Diego, USA

  • Heidari M, Khanlari GR, Kaveh MT, Kargarian S (2012) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng 45:265–273. https://doi.org/10.1007/s00603-011-0196-8

    Article  Google Scholar 

  • Hush DR (1989) Classification with neural networks: a performance analysis. In: IEEE 1989 International Conference on Systems Engineering, Fairborn, OH, USA

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Hudson JA, Ulusay R (eds) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics (ISRM) Turkish National Group, Ankara

    Google Scholar 

  • Jabbar MA (2011) Correlations of point load index and pulse velocity with the uniaxial compressive strength for rocks. J Eng 14:992–1006

    Google Scholar 

  • Jafari E, nikudel MR, Ahmadi A, (2010) Evaluation of strength characteristics of rocks using block and cylindrical punch test results. J Sci University Tehran 36:169–183

    Google Scholar 

  • Jahed Armaghani D, Tonnizam Mohamad E, Momeni E, Narayanasamy MS, Mohd Amin MF (2015) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range Granite. Bull Eng Geol Environ 74:1301–1319. https://doi.org/10.1007/s10064-014-0687-4

    Article  Google Scholar 

  • Jing H, Nikafshan Rad H, Hasanipanah M, Jahed Armaghani D, Qasem SN (2020) Design and implementation of a new tuned hybrid intelligent model to predict the uniaxial compressive strength of the rock using SFS-ANFIS. Eng Comput. https://doi.org/10.1007/s00366-020-00977-1

    Article  Google Scholar 

  • Jung J, Brousse R (1959) Classification modale des roches éruptive.s: roches éruptive.s utilizant les données fournies par le compteur de points. Bull Min 82:409–410

    Google Scholar 

  • Jungmann M, Pape H, Wißkirchen P, Clauser C, Berlage T (2014) Segmentation of thin section images for grain size analysis using region competition and edge-weighted region merging. Comput Geosci 72:33–48. https://doi.org/10.1016/j.cageo.2014.07.002

    Article  Google Scholar 

  • Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3):215–236. https://doi.org/10.1016/0925-2312(95)00039-9

    Article  Google Scholar 

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994. https://doi.org/10.1016/S1365-1609(01)00039-9

    Article  Google Scholar 

  • Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42:584–589. https://doi.org/10.1016/j.ijrmms.2005.02.004

    Article  Google Scholar 

  • Kallu RR, Roghanchi P (2015) Correlations between direct and indirect strength test methods. Int J Min Sci Tech 25:355–360. https://doi.org/10.1016/j.ijmst.2015.03.005

    Article  Google Scholar 

  • Kanellopoulas I, Wilkinson GG (1997) Strategies and best practice for neural network image classification. Int J Remote Sens 18:711–725. https://doi.org/10.1080/014311697218719

    Article  Google Scholar 

  • Khanlari GR, Heidari M, Noori M, Momeni A (2016) The effect of petrographic characteristics on engineering properties of conglomerates from Famenin region, northeast of Hamedan. Iran Rock Mech Rock Eng 49:2609–2621. https://doi.org/10.1007/s00603-016-0929-9

    Article  Google Scholar 

  • Liu H, Wei H, Wei L, Li J, Yang Z (2016) The segmentation of wear particles images using J-segmentation algorithm. Adv Tribol. https://doi.org/10.1155/2016/4931502

    Article  Google Scholar 

  • Looney CG (1997) Pattern recognition using neural networks: Theory and algorithms for engineers and scientists. Oxford University Press, New York

    Google Scholar 

  • Lulio LC, Tronco ML, Porto AJV (2009) JSEG-based image segmentation in computer vision for agricultural mobile robot navigation, 2009 IEEE international symposium on computational intelligence in robotics and automation - (CIRA). Daejeon, South Korea 2009:240–245. https://doi.org/10.1109/CIRA.2009.5423201

    Article  Google Scholar 

  • Manouchehrian A, Sharifzadeh M, Hamidzadeh Moghadam R (2012) Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics. Int J Min Sci Technol 22:229–236. https://doi.org/10.1016/j.ijmst.2011.08.013

    Article  Google Scholar 

  • Mason RL, Gunst RF, Hess JL (1989) Statistical design and analysis of experiments: applications to engineering and science. Wiley, New York

    Google Scholar 

  • Masters T (1994) Practical Neural Network Recipes in C++. Academic Press, Boston

    Google Scholar 

  • Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  • Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci 6:1925–1931. https://doi.org/10.1007/s12517-011-0460-y

    Article  Google Scholar 

  • Mishra DA, Basu A (2012) Use of the block punch test to predict the compressive and tensile strengths of rocks. Int J Rock Mech Min Sci 51:119–127. https://doi.org/10.1016/j.ijrmms.2012.01.016

    Article  Google Scholar 

  • Mlynarczuk M (1999) Some remarks on the application of image analysis and image processing for the description of the geometrical structures of rock. Physicochem Probl Miner Process 33:107–116

    Google Scholar 

  • Moradian Z, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9:14–19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14)

    Article  Google Scholar 

  • Nelson M, Illingworth WT (1991) A practical guide to neural nets. Addison-Wesley Longman, Boston

    Google Scholar 

  • Obara B (2007) A new algorithm using image color system transformation for rock grain segmentation. Min Petrol 91:271–285. https://doi.org/10.1007/s00710-007-0200-x

    Article  Google Scholar 

  • Okut H (2016) Bayesian regularized neural networks for small n big p data. In: Rosa JLG (ed) Artificial neural networks-models and applications. IntechOpen, pp 27–48. https://doi.org/10.5772/63256

  • Onodera TF, Asoka Kumara HM (1980) Relation between texture and mechanical properties of crystalline rocks. Bull Int Assoc Eng Geol 22:173–177

    Google Scholar 

  • Ozturk CA, Nasuf E (2013) Strength classification of rock material based on textural properties. Tunn Undergr Space Technol 37:45–54. https://doi.org/10.1016/j.tust.2013.03.005

    Article  Google Scholar 

  • Paola JD (1994) Neural network classification of multispectral imagery. Ph.D. Dissertation, The University of Arizona, Arizona, USA

  • Pappalardo G, Punturo R, Mineo S, Ortolano G, Castelli F (2016) Engineering geological and petrographic characterization of migmatites belonging to the Calabria-Peloritani Orogen (southern Italy). Rock Mech Rock Eng 49:1143–1160. https://doi.org/10.1007/s00603-015-0808-9

    Article  Google Scholar 

  • Pells PJN (1975) The use of the point load test in predicting the compressive strength of rock materials. Aust Geomech J 95:54–56

    Google Scholar 

  • Prikryl R (2006) Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng Geol 87:149–162. https://doi.org/10.1016/j.enggeo.2006.05.011

    Article  Google Scholar 

  • Ripley BD (1993) Statistical aspects of neural networks. In: Barndoff-Neilsen Jensen OE, Jensen JL, Kendall WS (eds) Networks and Chaos-Statistical and Probabilistic Aspects. Chapman & Hall, London, pp 40–123

    Chapter  Google Scholar 

  • Ross BJ, Fueten F, Yashkir DY (2001) Automatic mineral identification using genetic programming. Mach vis Appl 13:61–69. https://doi.org/10.1007/PL00013273

    Article  Google Scholar 

  • Sabzehei M, Roshan Ravan J, Amini B, Eshraghi SA, Alai Mahabadi S, Seraj M (1993) Geological Quadrangle Map of Iran, No H-11, scale 1: 250000. Geol. Surve. Iran, Tehran, Iran

  • Saedi B, Mohammadi SD, Shahbazi H (2018) Prediction of uniaxial compressive strength and elastic modulus of migmatites using various modeling techniques. Arab J Geosci. https://doi.org/10.1007/s12517-018-3912-9

    Article  Google Scholar 

  • Saedi B, Mohammadi SD, Shahbazi H (2019) Application of fuzzy inference system to predict uniaxial compressive strength and elastic modulus of migmatites. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8219-y

    Article  Google Scholar 

  • Saedi B (2019) The study of engineering geological properties of migmatites of Sanandaj-Sirjan zone with emphasis on fabric effect. Ph.D. Dissertation, Bu-Ali Sina University, Hamedan, Iran

  • Sahandi MR, Radfar J, Hoseinidoust J, Mohajjel M (2006) Geological map of Iran, 1:100000 series, sheet 5857. Geol. Surve. Iran, Tehran, Iran

  • Sawyer EW (2008) Atlas of Migmatites. NRC Research Press, Ottawa (10.1139/9780660197876)

    Book  Google Scholar 

  • Shakoor A, Bonelli RE (1991) Relationship between petrographic characteristics engineering index properties and mechanical properties of selected sandstone. Bull Int Assoc Eng Geol 28:55–71. https://doi.org/10.2113/gseegeosci.xxviii.1.55

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22. https://doi.org/10.1007/s10064-007-0109-y

    Article  Google Scholar 

  • Singh TN, Kainthola A, Venkatesh A (2012) Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech Rock Eng 45:259–264. https://doi.org/10.1007/s00603-011-0192-z

    Article  Google Scholar 

  • Smith GN (1987) Probability and statistics in civil engineering: an introduction. Wiley-Blackwell, London

    Google Scholar 

  • Sonmez H, Tunusluoglu C (2008) New considerations on the use of block punch index for predicting the uniaxial compressive strength of rock material. Int J Rock Mech Min Sci 45:1007–1014. https://doi.org/10.1016/j.ijrmms.2007.11.001

    Article  Google Scholar 

  • Sonmez H, Gekceoglu C, nefeslioglu HA, Kayabasi A, (2006) Estimation of rock modulus for intact rocks with an artificial neural network and for rock masses with a new empiral equation. Int J Rock Mech Min Sci 43:224–235. https://doi.org/10.1016/j.ijrmms.2005.06.007

    Article  Google Scholar 

  • Sonmez H, Ercanoglu M, Kalender A, Dagdelenler G, Tunusluoglu C (2016) Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension. Int J Rock Mech Min Sci 100(86):91–103. https://doi.org/10.1016/j.ijrmms.2016.03.022

    Article  Google Scholar 

  • Sulukcu S, Ulusay R (2001) Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength. Int J Rock Mech Min Sci 38:1091–1111. https://doi.org/10.1016/S1365-1609(01)00079-X

    Article  Google Scholar 

  • Swingler K (1996) Applying neural networks: a practical guide. Academic Press, London

    Google Scholar 

  • Tamrakar NK, Yokota S, Shrestha SD (2007) Relationships among mechanical, physical and petrographic properties of Siwalik sandstones, Central Nepal Sub-Himalayas. Eng Geol 90:105–123. https://doi.org/10.1016/j.enggeo.2006.10.005

    Article  Google Scholar 

  • Tandon SR, Gupta V (2013) The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Eng Geol 153:125–143. https://doi.org/10.1016/j.enggeo.2012.11.005

    Article  Google Scholar 

  • Tejaswini C, Mamatha YN (2015) Region based satellite image segmentation using JSEG algorithm. Int J Comput Sci Mob Comput 4(5):1012–1016

    Google Scholar 

  • Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317. https://doi.org/10.1016/S0013-7952(98)00071-4

    Article  Google Scholar 

  • Undul O (2016) Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Eng Geol 210:10–22. https://doi.org/10.1016/j.enggeo.2016.06.001

    Article  Google Scholar 

  • Wang Y, Zhou Y, Yang J, Wang Y (2004) JSEG based color separation of tongue image in traditional chinese medicine. In: Sanfeliu A, Martínez Trinidad JF, Carrasco Ochoa JA (eds) Progress in pattern recognition, image analysis and applications CIARP 2004 Lecture notes in computer science, vol 3287. Springer, Berlin (10.1007/978-3-540-30463-0_63)

    Google Scholar 

  • Wang C (1994) A theory of generalization in learning machines with neural application. Ph.D. Dissertation, The University of Pennsylvania, Pennsylvania, USA

  • Yesiloglu-Gultekin N, Keceli A, Sezer E, Can A, Gokceoglu C, Bayhan H (2012) A computer program (tsecsoft) to determine mineral percentages using photographs obtained from thin sections. Comput Geosci 46:310–316. https://doi.org/10.1016/j.cageo.2012.01.001

    Article  Google Scholar 

  • Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013a) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122. https://doi.org/10.1016/j.ijrmms.2013.05.005

    Article  Google Scholar 

  • Yesiloglu-Gultekin N, Sezer EA, Gokceoglu C, Bayhan H (2013b) An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Syst Appl 40:921–928. https://doi.org/10.1016/j.eswa.2012.05.048

    Article  Google Scholar 

  • Yilmazkaya E, Dagdelenler G, Ozcelik Y, Sonmez H (2018) Prediction of mono-wire cutting machine performance parameters using artificial neural network and regression models. Eng Geol 239:96–108. https://doi.org/10.1016/j.enggeo.2018.03.009

    Article  Google Scholar 

  • Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3):141–158. https://doi.org/10.1016/j.enggeo.2007.10.009

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant to Dr. S.D. Mohammadi by the vice-president research office of Bu-Ali Sina University, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Bahman Saedi: laboratory experiments, data curation, formal analysis, investigations, conclusion of results, writing, resources. Seyed Davoud Mohammadi: dissertation supervisor, article ideation, conceptualization, funding acquisition, reviewing and editing. Both authors read and approved the final manuscript

Corresponding author

Correspondence to Seyed Davoud Mohammadi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedi, B., Mohammadi, S.D. Prediction of Uniaxial Compressive Strength and Elastic Modulus of Migmatites by Microstructural Characteristics Using Artificial Neural Networks. Rock Mech Rock Eng 54, 5617–5637 (2021). https://doi.org/10.1007/s00603-021-02575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02575-z

Keywords

Navigation