Skip to main content
Log in

Engineering Geological and Petrographic Characterization of Migmatites Belonging to the Calabria-Peloritani Orogen (Southern Italy)

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The laboratory characterization of migmatite rocks, affected by tunneling works in southern Calabria (Italy), has been carried out with the purpose of investigating the relationship between some potentially interdependent petrographic and petrophysical features with the mechanical behavior of the excavated rocks. Mineralogical and petrographic investigation allowed estimating the modal composition of the rock and the grain size of the constituting minerals, as well as examining the intergranular contacts and associated microfractures. The velocity of seismic waves within the specimens has been measured and calculated, along with the elastic properties of the rock. Specimens were also characterized from the physical–mechanical point of view and their mode of failure was considered. Results show that the mechanical behavior of migmatites varies within the sample population, although the specimens belong to the same sampling area. It is controlled by both porosity and modal composition of the rock. Thus, primary minerals were grouped with respect to their elastic properties; their abundance/deficiency within the specimen controls its mechanical strength. This is also reflected in the modes of failure associated to different strength values. This is a new consideration in the laboratory characterization of this rock type, largely cropping out in several contexts worldwide. Results should be taken into account before starting engineering works, in order to avoid errors resulting from considering this rock as a homogeneous material from the mechanical and petrographic points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ademeso OA, Adekoya AJ (2011) Relationship between petrography and uniaxial compressive strength of some crystalline basement complex rocks of some areas in southwestern Nigeria. Br J Sci 2(1):21–34

    Google Scholar 

  • Alexandrov KS, Belikov BP, Rysova TV (1966) Vycislenie uprugich parametrov gornich porod pomineralnomu sostavu. Izvestia A. N. SSSR Ser Geol Moskva 2:3–19

  • Al-Harthi AA, Al-Hamri RM, Shehata WM (1999) The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng Geol 54:313–320

    Article  Google Scholar 

  • Almeida LCR, Marques EAG, Vargas, Jr. EA, Barros WT (1998) Characterization and utilization of tensile strength and toughness of granitic and gneissic rocks of Rio de Janeiro City—a proposal for optimizing rock blasting processes. In: Moore DP, Hungr O (eds) Proceedings of eighth international congress of IAEG, vol 1. Balkema, Vancouver, pp 351–357

  • Amigun JO, Ako BD (2009) Rock density—a tool for mineral prospection: a case study of Ajabanoko Iron Ore Deposit, Okene SW Nigeria. Pac J Sci Technol 10(2):733–741

    Google Scholar 

  • Appel P, Cirrincione R, Fiannacca P, Pezzino A (2011) Age constraints on late paleozoic evolution of continental crust from electron microprobe dating of monazite in the Peloritani mountains (southern Italy): another example of resetting of monazite ages in high-grade rocks. Int J Earth Sci 100(1):107–123

    Article  Google Scholar 

  • ASTM designation: D2845-00. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rocks

  • Barbano MS, Pappalardo G, Pirrotta C, Mineo S (2014) Landslide triggers along volcanic rock slopes in eastern Sicily (Italy). Nat Hazards 73:1587–1607. doi:10.1007/s11069-014-1160-1

    Article  Google Scholar 

  • Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39:483–490

    Article  Google Scholar 

  • Basu A, Mishra DA, Roychowdhury K (2013) Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Environ 72:457–475. doi:10.1007/s10064-013-0505-4

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classification. Wiley, New York 251 pp

    Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kbar: part 2. J Geophys Res 66:2199–2224

    Article  Google Scholar 

  • Biringen E, Davie J (2011) Assessment of dynamic and static characteristics of igneous bedrock by means of suspension P-S logging and uniaxial compressive strength tests. In: 14th Pan-American conference on soil mechanics and geotechnical engineering, Ontario

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888

    Article  Google Scholar 

  • Brander L, Svahnberg H, Piazolo S (2012) Brittle-plastic deformation in initially dry rocks at fluid-present conditions: transient behaviour of feldspar at mid-crustal levels. Contrib Mineral Petrol 163:403–425. doi:10.1007/s00410-011-0677-5

    Article  Google Scholar 

  • Ceryan S, Tudes S, Ceryan N (2008) A new quantitative weathering classification for igneous rocks. Environ Geol 55:1319–1336

    Article  Google Scholar 

  • Chatterjee R, Mukhopadhyay M (2002) Petrophysical and geomechanical properties of rocks from the oilfields of the Krishna-Godvari and Cauvery Basins, India. Bull Eng Geol Environ 61:169–178. doi:10.1007/s100640100137

    Article  Google Scholar 

  • Cirrincione R, Fazio E, Fiannacca P, Ortolano G, Punturo R (2009) Microstructural investigation of naturally deformed leucogneiss from an Alpine shear zone (Southern Calabria—Italy). Pure appl Geophys 166:995–1010. doi:10.1007/s00024-009-0483

    Article  Google Scholar 

  • Cirrincione R, Fazio E, Heilbronner R, Kern H, Mengel K, Ortolano G, Pezzino A, Punturo R (2010) Microstructure and elastic anisotropy of naturally deformed leucogneiss from a shear zone in Montalto (southern Calabria, Italy). In: Spalla MI, Marotta AM, Gosso G (eds) Advances in interpretation of geological processes, vol 332. Geological Society, London, Special Publications, pp 49–68. doi:10.1144/SP332.4

  • Cirrincione R, Fiannacca P, Ortolano G, Pezzino A, Punturo R (2013) Granitoid stones from Calabria (southern Italy): petrographic, geochemical and petrophysical characterization of ancient quarries of roman age. Periodico di Mineralogia 82(1):41–59

    Google Scholar 

  • Dearman WR (1974) Weathering classification in the characterization of rock for engineering purposes in British practice. Bull Int Assoc Eng Geol 9:33–42

    Article  Google Scholar 

  • Dearman WR, Baynes FJ, Irfan TY (1978) Engineering grading of weathered granite. Eng Geol 12:345–374

    Article  Google Scholar 

  • den Brok SWJ, Spiers CJ (1991) Experimental evidence for water weakening by microcracking plus solution precipitation creep. J Geol Soc Lond 148:541–548

    Article  Google Scholar 

  • Dunn DE, La Fountain LJ, Jackson RE (1973) Porosity dependence and mechanism of brittle fracture in sandstone. J Geophys Res 78(14):2403–2417

    Article  Google Scholar 

  • EN 1926 (1999) Natural stone test methods—determination of compressive strength. European Committee for Standardization, Brussels

  • EN 1936 (1999) Natural stone test methods—determination of real density and apparent density, and of total open porosity. European Committee for Standardization, Brussels

  • Engelder T, Plumb R (1984) Changes in in situ ultrasonic properties of rock on strain relaxation. Int J Rock Mech Min Sci Geomech Abstr 21(2):75–82

    Article  Google Scholar 

  • Fiannacca P, Williams IS, Cirrincione R, Pezzino A (2013) The augen gneisses of the Peloritani mountains (NE sicily): granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the precambrian. Gondwana Res 23(2):782–796

    Article  Google Scholar 

  • Finetti I, Del Ben A (1986) Geophysical study of the Tyrrhenian opening. Boll Geof Teor e Appl 28(110):75–156

    Google Scholar 

  • Finetti I, Lentini F, Carbone S, Catalano S, Del Ben A (1996) Il Sistema Appennino Meridionale-Arco Calabro—Sicilia nel Mediterraneo central: studio geologio—geofisico. Boll Soc Geol It 115:529–559

    Google Scholar 

  • Gebrande H, Kern H, Rummel F (1982) Elasticity and inelasticity. In: Hellwege K-H (ed) Landolt–Boernstein numerical data and functional relationships in science and technology, new series, group V. Geophysics and space research, vol 1, Physical properties of rocks, subvol. B. Springer, Berlin, pp 1–233

  • Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837. doi:10.1038/NMAT3134

    Article  Google Scholar 

  • Gupta AS, Seshagiri Rao K (1998) Index properties of weathered rocks: inter-relationships and applicability. Bull Eng Geol Env 57:161–172

    Article  Google Scholar 

  • Gupta V, Sharma R (2012) Relationship between textural, petrophysical and mechanical properties of quartzites: a case study from northwestern Himalaya. Eng Geol 135–136:1–9. doi:10.1016/j.enggeo.2012.02.006

    Article  Google Scholar 

  • Hacker BR, Abers GA (2004) Subduction Factory 3. An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst 5:Q01005. doi:10.1029/2003GC000614

    Article  Google Scholar 

  • Hatzor YH, Palchik V (1998) A microstructure-based failure criterion for Aminadav dolomites. Int J Rock Mech Min Sci Geomech Abstr 35(6):797–805

    Article  Google Scholar 

  • Helgerud M, Dvorkin J, Nur A, Sakai A, Collett T (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26(13):2021–2024

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. Institution of Mining and Metallurgy, London

    Google Scholar 

  • Hoshino K (1974) Effect of porosity on the strength of clastic sedimentary rocks. In: Proceedings of third congress on International Society of Rock Mechanics, vol 1, Denver. Balkema, Rotterdam, pp 511–516

  • Hudson JA, Harrison JP (1997) Engineering rock mechanics—an introduction to the principles. Elsevier Science, Oxford

    Google Scholar 

  • Irfan TY (1996) Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Q J Eng Geol 29:5–35

    Article  Google Scholar 

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994

    Article  Google Scholar 

  • Katahara KW (1996) Clay mineral elastic properties, 66th SEG-meeting. Denver, Extended abstracts II

    Google Scholar 

  • Kelsall PC, Watters RJ, Franzone JG (1986) Engineering characterization of fissured weathered dolerite and vesicular basalt. In: Rock mechanics: key to energy production, proceedings of 27th US symposium on rock mechanics, Tuscaloosa

  • Kizaki K (1972) Configuration of migmatite dome, comparative tectonics of migmatite in the Hidaka Metamorphic Belt. J. Fac. Sci. Hokkaido Univ. Ser. 4. Geol Mineral 15(1–2):157–172

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Launeau P, Cruden AR, Bouchez JL (1994) Mineral recognition in digital images of rocks: a new approach using multichannel classification. Can Mineral 32:919–933

    Google Scholar 

  • Loew S, Barla G, Diederichs M (2010) Engineering geology of Alpine tunnels: past, present and future. In: Williams et al. (eds) Geologically active. Taylor & Francis Group, London, pp 201–253

  • Mancktelow NS, Pennacchioni G (2005) The control of precursor brittle fracture and fluid-rock interaction on the development of single and paired ductile shear zones. J Struct Geol 27:645–661

    Article  Google Scholar 

  • Marciniszyn T, Sieradzki A (2012) Selected properties of amphibolites and migmatites from the G.A.M Kluczowa Mine. AGH J Min Geoeng 36(2):75–81

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook: tools for seismic analysis in porous media. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • McWilliams JR (1966) The role of microstucture in the physical properties of rock. Testing techniques for rock mechanics, ASTM STP 402:175–189

    Google Scholar 

  • Miller RP (1965) Engineering classification and index properties for intact rock. Ph.D. Thesis, University of Illinois

  • Mineo S, Pappalardo G, Rapisarda F, Cubito A, Di Maria G (2015) Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng Geol 195:225–235. doi:10.1016/j.enggeo.2015.06.010

    Article  Google Scholar 

  • Monaco C, Tortorici L (2000) Active faulting in the Calabrian Arc and eastern Sicily. J Geodyn 29:407–424

    Article  Google Scholar 

  • Ortolano G, Cirrincione R, Pezzino A (2005) P-T evolution of alpine metamorphism in the southern Aspromonte Massif (Calabria—Italy). Schweiz Mineral Petrogr Mitt 85(1):31–56

    Google Scholar 

  • Ortolano G, Cirrincione R, Pezzino A, Tripodi V, Zappalà L (2014a) Petro-structural geology of the Eastern Aspromonte Massif crystalline basement (southern Italy—Calabria): an example of interoperable geo-data management from thin section—to field scale. J Maps. doi:10.1080/17445647.2014.948939

    Google Scholar 

  • Ortolano G, Zappalà L, Mazzoleni P (2014b) X-Ray Map Analyzer: a new ArcGIS® based tool for the quantitative statistical data handling of X-ray maps (geo- and material-science applications). Comput Geosci 72:49–64

    Article  Google Scholar 

  • Palchik V, Hatzor YH (2002) Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Eng Geol 63:233–245

    Article  Google Scholar 

  • Pappalardo G (2015) Correlation between P-wave velocity and physical–mechanical properties of intensely jointed dolostones, Peloritani mounts, NE Sicily. Rock Mech Rock Eng 48:1711–1721. doi:10.1007/s00603-014-0607-8

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Marchese G (2013) Effects of cubical specimen sizing on the uniaxial compressive strength of Etna volcanic rocks (Italy). Ital J Eng Geol Environ 2:5–14. doi:10.4408/IJEGE.2013-02.O-03

    Google Scholar 

  • Pappalardo G, Mineo S, Rapisarda F (2014) Rockfall hazard assessment along a road on the Peloritani Mountains (northeastern Sicily, Italy) Nat. Hazards Earth Syst Sci 14:2735–2748. doi:10.5194/nhess-14-2735-2014

    Article  Google Scholar 

  • Pezzino A, Angi’ G, Cirrincione R, De Vuono E, Fazio E, Fiannacca P, Ortolano G, Punturo R (2008) Alpine metamorphism in the Aspromonte Massif: implications for a new framework for the southern sector of the Calabria-Peloritani Orogen (Italy). Int Geol Rev 50:423–441

  • Popp T, Kern H (1994) Influence of dry and water saturated cracks on seismic velocities of crustal rocks—a comparison of experimental data with theoretical model. Surv Geophys 15(5):443–465

    Article  Google Scholar 

  • Punturo R, Kern H, Cirrincione R, Mazzoleni P, Pezzino A (2005) P- And S-wave velocities and densities in silicate and calcite rocks from the Peloritani mountains, Sicily (Italy): the effect of pressure, temperature and the direction of wave propagation. Tectonophysics 409(1–4):55–72

    Article  Google Scholar 

  • Punturo R, Cirrincione R, Fazio E, Fiannacca P, Kern H, Mengel K, Ortolano G, Pezzino A (2014) Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope core complex, Greece). Geol Mag 151(6):1051–1071

    Article  Google Scholar 

  • Rao MVMS, Prasanna Lakshmi KJ, Nagaraja Rao GM, Vijayakumar K, Udayakumar S (2011) Precursory microcracking and brittle failure of Latur basalt and migmatite gneiss under compressive loading. Curr Sci 101(8):1053–1059

    Google Scholar 

  • Rusnak J, Mark C (2000) Using the point load test to determine the uniaxial compressive strength of coal measure rock. In: Proceedings of the 19th international conference on ground control in mining, Morgantown, pp 362–371

  • Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variations controlled by microstructure for sedimentary rocks. Eng Geol 97:80–90

    Article  Google Scholar 

  • Sharma R, Gupta V, Arora BR, Sen K (2011) Petrophysical properties of the Himalayan granitoids: implication on composition and source. Tectonophysics 497:23–33

    Article  Google Scholar 

  • Sousa LMO, Suarez del Rio LM, Calleja L, Ruiz de Argandofia VG, Rodriguez-Rey A (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168

  • Stan-Kleczek I, Sutkowska K, Stan D, Zolich M (2012) The study of the relationship between cracks and seismic parameters of rocks. Acta Geodynamica et Geomaterialia 9(2):137–142

    Google Scholar 

  • Szwedzicki T (2007) A hypothesis on modes of failure of rock samples tested in uniaxial compression. Rock Mech Rock Eng 40(1):97–104. doi:10.1007/s00603-006-0096-5

    Article  Google Scholar 

  • Szwedzicki T, Shamu W (1999) The effect of material discontinuities on strength of rock samples. In: Proc., Australasian Institute of Mining and Metallurgy, vol 304, no 1, pp 23–28

  • Tamrakar NK, Yokota S, Das Shrestha S (2007) Relationships among mechanical, physical and petrographic properties of Siwalik sandstones, Central Nepal Sub-Himalayas. Eng Geol 90:105–123

    Article  Google Scholar 

  • Tourenq C, Fourmaintraux D, Denis A (1971) Propagation des ondes et discontinuités des roches. In: Proceedings of the international symposium on rocks mechanics, Nancy, I-1

  • Tugrul A, Gurpinar O (1997) A proposed weathering classification for basalts and their engineering properties (Turkey). Bull Int Assoc Eng Geol 55:139–149

    Article  Google Scholar 

  • Tuncay E, Hasancebi N (2009) The effect of length to diameter ratio of test specimens on the uniaxial compressive strength of rock. Bull Eng Geol Environ 68:491–497

    Article  Google Scholar 

  • Vernik L, Bruno M, Bovberg C (1993) Empirical relations between compressive strength and porosity of siliciclastic rocks. Int J Rock Mech Min Sci Geomech Abstr 30(7):677–680

    Article  Google Scholar 

Download references

Acknowledgments

The Authors wish to thank Dr. Giuseppina Rannone, for her friendly assistance during the sampling activity in the tunneling sections, Prof. Giovanni Barla and two anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pappalardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, G., Punturo, R., Mineo, S. et al. Engineering Geological and Petrographic Characterization of Migmatites Belonging to the Calabria-Peloritani Orogen (Southern Italy). Rock Mech Rock Eng 49, 1143–1160 (2016). https://doi.org/10.1007/s00603-015-0808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0808-9

Keywords

Navigation