Skip to main content
Log in

Closed-Form Solution and Reliability Analysis of Deep Tunnel Supported by a Concrete Liner and a Covered Compressible Layer Within the Viscoelastic Burger Rock

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Time-dependent rock behavior can significantly affect the design and the construction method of tunnel support lining. As an innovation, a concrete liner covered with a compressible layer is thus of great interest to reduce the underground space project costs. Indeed, the compressible material usually exhibits very high deformability under oedometric loading (30–60% volumetric deformation under a weak variation in axial stress). This helps to absorb the convergence of the excavated wall of the squeezing rock, and thus limit the transmission of stress to the inner concrete lining. This study firstly aims at deriving a closed-form solution for a deep-circular tunnel excavated within the viscoelastic Burger rock and supported by a double-layer concrete/compressible material. The inner concrete layer is assumed to be linear elastic, while the outer compressible layer is described by a tri-linear elastic model. The analytical solution is derived under the integral equation form. Secondly, the effects of uncertainty of time-dependent mechanical properties of host rock on the failure probability of tunnel for a period of 100 years are studied by introducing the closed-form solution into the well-known Kriging-based reliability analysis AK-MCS (Active learning reliability method combining Kriging and Monte Carlo Simulation) method. Notably, the benefit of the compressible layer is highlighted from the reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(R_{1} ,R_{2} ,R_{3}\) :

Radius of the tunnel, inner radius of the first and second liner

\(l_{1} ,l_{2}\) :

Thickness of the first and second liners

\(t,\tau\) :

Time

\(t_{0}\) :

Installation time of the first and second liners

\(t_{1} \left( {t_{2} } \right)\) :

Time instant at which the elastic behavior of first liner changes from the first (second) to the second (third) slope

\(p_{0}^{h} ,p_{0} \left( t \right)\) :

Hydrostatic far-field stress, fictitious internal pressure applied on the tunnel’s perimeter

\(\chi (t)\) :

Dimensionless parameter to account for the effect of the tunnel face advancement

\(m_{1} ,m_{2}\) :

Parameters characterizing the curve of tunnel face advancement

\(v_{l}\) :

Longitudinal excavation rate of tunnel

\(p_{1} (t),p_{2} (t)\) :

Supported pressure at the outer face of the first and second liners

\(p_{11} (t),p_{21} (t)\) :

Supported pressure at the outer face of the first and second liner in the period \(t_{0} \le t < t_{1}\)

\(p_{12} (t),p_{22} (t)\) :

Supported pressure at the outer face of the first and second liner in the period \(t_{1} \le t < t_{2}\)

\(p_{13} (t),p_{23} (t)\) :

Supported pressure at the outer face of the first and second liner in the period \(t_{2} \le t\)

\(G_{M}\)(\(G_{K}\)):

Shear elastic modulus of the Maxwell (Kelvin) element in the Burger model

\(\eta_{M}\)(\(\eta_{K}\)):

Viscosity coefficient of the dashpot of the Maxwell (Kelvin) element in the Burger model

\(\sigma_{ij} ,\varepsilon_{ij}\) :

Stress and strain tensors

\(s_{ij} ,e_{ij}\) :

Deviatoric tensor of stress and strain

\(\sigma_{r} ,\sigma_{\theta }\) :

Radial and hoop stress in the rock mass

\(\sigma_{rL} ,\sigma_{\theta L}\) :

Radial and hoop stress in the concrete liner

\(u_{r} ,u_{rc} ,u_{rL}\) :

Radial displacement in the rock mass, in the compressible liner and in the concrete liner

\(u_{rc1} ,u_{rc2} ,u_{rc3}\) :

Radial displacement in the compressible liner corresponding to the first period (\(t_{0} \le t < t_{1}\)), the second period (\(t_{1} \le t < t_{2}\)) and third period (\(t_{2} \le t\))

\(\varepsilon_{\lim 1} ,\varepsilon_{\lim 2}\) :

Parameters limit the first/second stage and second/third stage of the tri-linear elastic model of the compressible material

\(\varepsilon_{v}\) :

Volumetric deformation in the compressible liner

\(\varepsilon_{v1} ,\varepsilon_{v2} ,\varepsilon_{v3}\) :

Volumetric deformation in the compressible liner corresponding to the first period \(t_{0} \le t < t_{1}\) the second period \(t_{1} \le t < t_{2}\)and the third period \(t_{2} \le t\)

\(E_{c1} ,E_{c2} ,E_{c3} ,\,\,\nu_{c} \,\,\,\) :

Young’s modulus at each stage and Poisson ratio of the tri-linear compressible liner

\(K_{c1} ,K_{c2} ,K_{c3}\) :

Bulk modulus at each stage of the tri-linear compressible liner

\(E_{L} ,\,\,\nu_{L}\) :

Young’s modulus and Poisson ratio of the second liner

\(G_{L} ,\,\,K_{L}\) :

Shear and bulk moduli of the second liner

\(f(x),y(x)\) :

Free term and solution of the integral equation

\(E{}_{1},E{}_{2},\lambda_{1} ,\lambda_{2} ,F_{1} ,F_{2}\) :

Constant coefficients of the integral equation

\(D_{a}\) :

The discriminant of the characteristic equation of the integral equation

X=[\(G_{M}\),\(\eta_{M}\),\(G_{K}\),\(\eta_{K}\)]:

Random variable vector of four parameters of the Burger rock in the reliability analysis

\(G\left( {\mathbf{X}} \right)\) :

Limit state function (or performance function)

\(G_{Tunnel} \left( {\mathbf{X}} \right)\) :

Performance function defines the limit convergence on the tunnel surface

\(G_{L} \left( {\mathbf{X}} \right)\) :

Performance function relates to the maximum equivalent stress on the concrete liner

\(P_{f}\) :

Probability of failure

\(\begin{gathered} q_{L2} ({\mathbf{X}}) = \hfill \\ \mathop {\max }\limits_{{r \in \left[ {R_{3} ,R_{2} } \right]}} \left| {\sigma_{\theta L}^{{}} (r,{\mathbf{X}}) - \sigma_{rL}^{{}} (r,{\mathbf{X}})} \right| \hfill \\ \end{gathered}\) :

Maximum equivalent stress in the second liner

\(\sigma_{cl}\) :

Allowable stresses of the concrete liner

\(u_{\max }\) :

Allowable convergence of tunnel

\(\overline{G} \left( {\mathbf{X}} \right)\) :

Approximation of the limit state function by the Kriging metamodel

S, y:

Matrix data of the training points and the vector of the exact performance function value

β, k (X):

Vector of regression coefficient and the vector of basis-functions of the Gaussian process

\(R,{{\varvec{\uptheta}}}\) :

Auto-correlation function of the Gaussian process and the hyperparameters vector

\(\mu_{{\overline{G} }} ({\text{X}}),\sigma_{{\overline{G} }}^{2} ({\text{X}})\) :

Mean and variance values of the performance function predicted by the Kriging metamodel

U (X):

Active learning function to choose the new training points

References

  • Armand G, Bumbieler F, Conil N, Cararreto S, de La Vaissière R, Noiret A, Seyedi D, Talandier J, Vu MN, Zghondi J (2016) The Meuse/Haute-Marne underground research Laboratory: Mechanical behavior of the Callovo-Oxfordian claystone. In Rock Mechanics and Engineering Volume 2 (Edited by Xia-Ting Feng).

  • Armand G, Noiret A, Zghondi J, Seyedi DM (2013) Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne underground research laboratory. J Rock Mech Geotech Eng 5(3):221–230

    Google Scholar 

  • Barla G, Debernardi D, Sterpi D (2011) Time-dependent modeling of tunnels in squeezing conditions. Int J Geomech 12(6):697–710

    Google Scholar 

  • Billig B, Ebsen B, Gipperich C, Schaab A, Wulff M (2007) DeCo Grout - Innovative Grout to cope with rock deformations in TBM tunnelling. In Proc ITA World Tunnel Congress - Underground Space - 4th Dimension Metropolises 2:1487–92.

  • Bichon BJ, McFarland JM, Mahadevan S (2011) Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliab Eng Syst Saf 96:1386–1395

    Google Scholar 

  • Bobet A (2011) Lined circular tunnels in elastic transversely anisotropic rock at depth. Rock Mech Rock Eng 44(2):149–167

    Google Scholar 

  • Bobet A (2016) Deep tunnel in transversely isotropic rock with groundwater flow. Rock Mech Rock Eng 49:4817–4832

    Google Scholar 

  • Bobet A (2010) Characteristic curves for deep circular tunnels in poroplastic rock. Rock Mech Rock Eng 43:185–200

    Google Scholar 

  • Bonini M, Debernardi D, Barla M, Barla G (2007) The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mech Rock Eng 42(2):361–388

    Google Scholar 

  • Camusso M, Saitta A, Ozanam O, Vu MN (2020) CIGEO radioactive waste repository project – Modelling of claystone behavior and analysis of thermomechanical induced effects based on FLAC3D simulations. In Proceedings of the 5th International Itasca Symposium, Vienna, Austria.

  • Chen R, Tonon F (2011) Closed-form solutions for a circular tunnel in elastic-brittle-plastic ground with the original and generalized hoek-brown failure criteria. Rock Mech Rock Eng 44:169–178

    Google Scholar 

  • Do DP, Tran NH, Hoxha D, Dang HL (2017) Assessment of the influence of hydraulic and mechanical anisotropy on the fracture initiation pressure in permeable rocks using a complex potential approach. Int J Rock Mech Min Sci 100:108–123

    Google Scholar 

  • Do DP, Tran NT, Mai VT, Hoxha D, Vu MN (2019) Time-dependent reliability analysis of deep tunnel in the viscoelastic Burger rock with the sequential installation of liners. Rock Mech Rock Eng 53:1259–1285

    Google Scholar 

  • Echard B, Gayton N, Lemaire MAK-MCS (2011) An active learning reliability method combining Kriging and Monte Carlo Simulation. Struct Saf 33:145–154

    Google Scholar 

  • Exadaktylos GE, Liolios PA, Stavropoulou MC (2003) A semi-analytical elastic stress-displacement solution for notched circular openings in rocks. Int J Solids Struct 40:1165–1193

    Google Scholar 

  • Fahimifar A, Tehrani FM, Hedayat A, Vakilzadeh A (2010) Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field. Tunnel Underground Space Technology 25:297–304

    Google Scholar 

  • Gaspar B, Teixeira AP, Soares CG (2015) A study on a stopping criterion for active refinement algorithms in Kriging surrogate models. Saf Reliab Complex Eng Syst., 1219–1227.

  • Goh ATC, Zhang W (2012) Reliability assessment of stability of underground rock caverns. Int J Rock Mech Min Sci 55:157–163

    Google Scholar 

  • Green AE, Zerna W (1968) Theoretical Elasticity. Dover Publications, Inc.

  • Guan Z, Jiang Y, Tanabasi Y (2007) Ground reaction analyses in conventional tunnelling excavation. Tunn Undergr Space Technol 22(2):230–237

    Google Scholar 

  • Hoek E (1999) Support for very weak rock associated with faults and shear zones. In Proc int symp rock support reinforcement practice min, Kalgoorlie, AUS 14–19.

  • Hwu C (2010) Anisotropic Elastic Plates. Springer.

  • Itasca Consulting Group, Inc. (2017) FLAC3D – Fast Lagrangian Analysis of Continua in 3 Dimensions, Ver. 6.0 User’s Manual. Minneapolis: Itasca.

  • Jaeger JC, Cook NGW, Zimmerman W (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, USA

    Google Scholar 

  • Langford JC, Diederichs MS (2013) Reliability based approach to tunnel lining design using a modified point estimate method. Int J Rock Mech Min Sci 60:263–276

    Google Scholar 

  • Laso E, Lera MSG, Alarcón E (1995) A level II reliability approach to tunnel support design. Appl Math Model 19:371–382

    Google Scholar 

  • Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day Inc, San Francisco

    Google Scholar 

  • Li HZ, Low BK (2010) Reliability analysis of circular tunnel under hydrostatic stress field. Comput Geotech 37(1):50–58

    Google Scholar 

  • Lophaven SN, Nielsen HB, Søndergaard J. DACE (2002). A Matlab Kriging Toolbox, Version 2.0. Informatics and Mathematical Modelling, Technical University of Denmark, DTU

  • Lü Q, Low BK (2011) Probabilistic analysis of underground rock excavation using response surface method and SORM. Comput Geotech 38(8):1008–1021

    Google Scholar 

  • Lü Q, Sun HY, Low BK (2011) Reliability analysis of ground-support interaction in circular tunnels using response surface method. Int J Rock Mech Min Sci 48(8):1329–1343

    Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Advances in Applied Probability 5:439–468

    Google Scholar 

  • Mollon G, Dias D, Soubra AH (2009) Probabilistic analysis of circular tunnels in homogeneous soils using response surface methodology. J Geotech Geoenviron Eng 135(9):1314–1325

    Google Scholar 

  • Nomikos P, Rahmannejad R, Sofianos A (2011) Supported axisymmetric tunnels within linear viscoelastic Burgers rocks. Rock Mech Rock Eng 44:553–564

    Google Scholar 

  • Park KH, Kim YJ (2006) Analytical solution for a circular opening in an elastic–brittle–plastic rock. Int J Rock Mech Min Sci 43:616–622

    Google Scholar 

  • Sharan SK (2005) Exact and approximate solutions for displacements around circular openings in elastic–brittle–plastic Hoek-Brown rock. Int J Rock Mech Min Sci 42:542–549

    Google Scholar 

  • Song F, Wang HN, Jiang MJ (2018) Analytical solutions for lined circular tunnels in viscoelastic rock considering various interface conditions. Appl Math Model 55:109–130

    Google Scholar 

  • Souley M, Zghondi J, Vu MN, Armand G (2017) A constitutive model for compresible materials: application to the study of interaction between supports and rock mass. 7th International conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Davos, Switzerland.

  • Spross J, Stille H, Johansson F, Palmstrøm A (2018) On the need for a risk-based framework in Eurocode 7 to facilitate design of underground openings in rock. Rock Mech Rock Eng 51:2427–2431

    Google Scholar 

  • Stroh AN (1962) Steady state problems in anisotropic elasticity. Journal of Mathematical Physics 41:77–103

    Google Scholar 

  • Sulem J, Panet M, Guenot A (1987) An analytical solution for time-dependent displacement in a circular tunnel. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 24:155–164

    Google Scholar 

  • Taherzadeh R, Laviguerie R, Daniel R, Boidy E, Ouffroukh H (2018) Concrete lining doubled in its outer side with a compressible layer applied for tunnels in viscoplastic rocks. AFTES 264:63–69

    Google Scholar 

  • Tran-Manh H, Sulem J, Subrin D (2015) A closed-form solution for tunnels with arbitrary cross section excavated in elastic anisotropic ground. Rock Mech Rock Eng 48:277–288

    Google Scholar 

  • Tran NT (2020) Long-term stability evaluation of underground constructions by considering uncertainties and variability of rock masses. PhD dissertation, Orleans University.

  • Vitali OPM, Celestino TB, Bobet A (2018) Analytical solution for tunnels not aligned with geostatic principal stress directions. Tunn Undergr Space Technol 82:394–405

    Google Scholar 

  • Vu MN, Guayacán-Carrillo LM, Armand G (2020) Excavation induced over pore pressure around drifts in the Callovo-Oxfordian claystone. Eur J Environ Civil Eng. https://doi.org/10.1080/19648189.2020.1784800

    Article  Google Scholar 

  • Wang S, Wu Z, Guo M, Ge X (2012) Theoretical solutions of a circular tunnel with the influence of axial in situ stress in elastic–brittle–plastic rock. Tunn Undergr Space Technol 30:155–168

    Google Scholar 

  • Wang HN, Li Y, Ni Q, Utili S, Jiang MJ, Liu F (2013) Analytical solutions for the construction of the deeply buried circular tunnel with two liners in rheological rock. Rock Mech Rock Eng 46:1481–1498

    Google Scholar 

  • Wang HN, Utili S, Jang MJ (2014) An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock. Int J Rock Mech Min Sci 68:85–106

    Google Scholar 

  • Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380

    Google Scholar 

  • Vu TM, Sulem J, Subrin D, Monin N, Lascols J (2013) Anisotropic closure in squeezing rocks: the example of Saint-Martin-la-Porte Access Gallery. Rock Mech Rock Eng 46(2):231–246

    Google Scholar 

  • Zareifard MR, Fahimifar A (2016) Analytical solutions for the stresses and deformations of deep tunnels in an elastic-brittle-plastic rock mass considering the damaged zone. Tunn Undergr Space Technol 58:186–196

    Google Scholar 

  • Zhang Q, Shao C, Wang HY, Jiang BS, Liu RC (2020) A fully coupled hydraulic-mechanical solution of a circular tunnel in strain-softening rock masses. Tunn Undergr Space Technol 99:103375

    Google Scholar 

  • Zghondi J, Carraretto S, Noiret A, Armand G (2015) Monitoring and behavior of an instrumented concrete lining segment of a TBM excavation experiment at the Meuse Haute-Marne Underground Research Laboratory. 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, CONCREEP-10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Phi Do.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Determination of the Supporting Pressures of the Outer Tri-Linear Compressible Liner and Inner Elastic Liner

The supporting pressures of two liners in which the first liner owes a tri-linear elastic behavior are mathematically conducted in more detail. The derivation process bases on the solution of the integral equation and is derived from the compatibility conditions of displacement at the interface between the rock mass and the compressible liner and at the interface of two liners.

Determination of Supporting Pressures for the Period \(t_{0} \le t \le t_{1}\).

Corresponding to this period, the elastic behavior of the compressible liner is in the first slope (i.e., elasticity Ec = Ec1). From the compatibility conditions of displacement at the interface between the rock mass and the first support, one obtain the following equation:

$$ \begin{gathered} \frac{{R_{1} }}{2}\left\{ {\int_{0}^{{t_{0} }} {p_{0}^{h} } \chi (\tau )H(t_{0} - \tau )d\tau - \int_{0}^{t} {p_{0}^{h} } \chi (\tau )H(t - \tau )d\tau + \int_{{t_{0} }}^{t} {p_{11} (\tau )} H(t - \tau )d\tau } \right\}\,\, \hfill \\ = a_{00,1} p_{11} (t) + a_{01,1} p_{21} (t), \hfill \\ \end{gathered} $$
(38)

with

$$ a_{00,1} = - \frac{1}{{2G_{L1,1}^{{}} }}\frac{{R_{1}^{{}} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }} - \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,1}^{{}} }}\frac{{R_{1}^{3} }}{{R_{1}^{2} - R_{2}^{2} }}\,{,}\,\,\,\,a_{01,1} = \frac{1}{{2G_{L1,1}^{{}} }}\frac{{R_{1} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }} + \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,1}^{{}} }}\frac{{R_{1} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }}\,, $$
(39)

The other compatibility conditions of displacement at the interface between two liners (Eq. (22)) yields

$$ p_{21} (t) = - \frac{{a_{10,1} p_{11} (t)}}{{a_{11,1} }} $$
(40)

with

$$ \begin{gathered} a_{10,1} = - \frac{1}{{2G_{L1,1}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }} - \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,1}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }}\,{,}\, \hfill \\ \,a_{10,1}^{*} = \frac{1}{{2G_{L1,1}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }} + \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,1}^{{}} }}\frac{{R_{2}^{3} }}{{R_{1}^{2} - R_{2}^{2} }}\,, \hfill \\ a_{11,1} = a_{10,1}^{*} + \frac{1}{{2G_{L2}^{{}} }}\frac{{R_{3}^{2} R_{2}^{{}} }}{{R_{2}^{2} - R_{3}^{2} }} + \frac{{1 + \nu_{L2}^{{}} }}{{K_{L2}^{{}} }}\frac{{R_{2}^{3} }}{{R_{2}^{2} - R_{3}^{2} }}, \hfill \\ \end{gathered} $$
(41)

Substituting Eq. (40) in Eq. (38) and after some developments, we deduce

$$ \begin{gathered} p_{11} \left( t \right) = \frac{{R_{1} a_{11,1} G_{M} }}{{2G_{M} (a_{00,1} a_{11,1} - a_{01,1} a_{10,1} ) - R_{1} a_{11,1} }}\int_{{t_{0} }}^{t} {(\frac{1}{{\eta_{M} }} + \frac{{\exp ( - G_{K} (t - \tau )/\eta_{K} )}}{{\eta_{K} }})p_{11} (\tau )d\tau } \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} + \frac{{2G_{M} (a_{00,1} a_{11,1} - a_{01,1} a_{10,1} )}}{{2G_{M} (a_{00,1} a_{11,1} - a_{01,1} a_{10,1} ) - R_{1} a_{11,1} }}f_{1}^{*} (t), \hfill \\ \end{gathered} $$
(42)

with

$$ \begin{gathered} f_{1}^{*} \left( t \right) = \frac{{R_{1} a_{11,1} }}{{2(a_{00,1} a_{11,1} - a_{01,1} a_{10,1} )}}\left( {\frac{{p_{0}^{h} }}{{G_{M} }}\left( {\chi (t_{0} ) - \chi (t)} \right) - \frac{{p_{0}^{h} }}{{\eta_{M} }}\int\limits_{{t_{0} }}^{t} {\chi (\tau )d\tau } } \right) \hfill \\ \begin{array}{*{20}c} {} & {} & + \\ \end{array} \frac{{R_{1} a_{11,1} }}{{2(a_{00,1} a_{11,1} - a_{01,1} a_{10,1} )}}\frac{{p_{0}^{h} }}{{\eta_{K} }}\left( {\int\limits_{0}^{{t_{0} }} {\chi (\tau )\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t_{0} - \tau )} \right)d\tau - \int\limits_{0}^{t} {\chi (\tau )\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)d\tau } } } \right), \hfill \\ \end{gathered} $$
(43)

By noting

$$ e_{1,1} = \frac{{R_{1} a_{11,1} G_{M} }}{{2G_{M} (a_{00,1} a_{11,1} - a_{01,1} a_{10,1} ) - R_{1} a_{11,1} }} $$
(44)

Eq. (42) becomes

$$ p_{11} \left( t \right) = f_{1} (t) + \int_{{t_{0} }}^{t} {\left( {\frac{{e_{1,1} }}{{\eta_{M} }} + \frac{{e_{1,1} }}{{\eta_{K} }}\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)} \right)p_{11} \left( \tau \right)d\tau } , $$
(45)

with

$$ f_{1} (t) = \frac{{2G_{M} (a_{00,1} a_{11,1} - a_{01,1} a_{10,1} )}}{{2G_{M} (a_{00,1} a_{11,1} - a_{01,1} a_{10,1} ) - R_{1} a_{11,1} }}f_{1}^{*} (t) $$
(46)

Equation (Eq. (43)) takes the form of the standard integral equation (see Eq. (23)) with the free term \(f_{1}^{{}} (t)\) and the Kernel \(\left( {\frac{{e_{1,1} }}{{\eta_{M} }} + \frac{{e_{1,1} }}{{\eta_{K} }}\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)} \right)\), whereas the corresponding parameters \(E{}_{1},E{}_{2},\lambda_{1} ,\lambda_{2}\) are respectively equal to \(E_{1} = - \frac{{e_{1,1} }}{{\eta_{M} }},\,\,\,\,\,E_{2} = - \frac{{e_{1,1} }}{{\eta_{K} }},\)\(\lambda_{1} = 0,\) \(\lambda_{2} = - \frac{{G_{K} }}{{\eta_{K} }}\).

Since \(\eta_{K} > 0,\,\,\eta_{M} \, > 0\), the discriminant of the quadratic Eq. (27) is positive, the solution \(p_{11}^{{}} (t)\) takes the same form of Eq. (24), which means

$$ p_{11}^{{}} (t) = f_{1}^{{}} (t) + \int_{{t_{0} }}^{t} {\left( {F_{1,1} e^{{\mu_{1,1} (t - \tau )}} + F_{2,1} e^{{\mu_{2,1} (t - \tau )}} } \right)} f_{1}^{{}} (\tau )d\tau , $$
(47)

with

$$ \begin{gathered} \begin{array}{*{20}c} {F_{1,1} = E_{1} \frac{{\mu_{1,1} - \lambda_{2} }}{{\mu_{2,1} - \mu_{1,1} }} + E_{2} \frac{{\mu_{1,1} - \lambda_{1} }}{{\mu_{2,1} - \mu_{1,1} }},} & {F_{2,1} = E_{1} \frac{{\mu_{2,1} - \lambda_{2} }}{{\mu_{1,1} - \mu_{2,1} }} + E_{2} \frac{{\mu_{2,1} - \lambda_{1} }}{{\mu_{1,1} - \mu_{2,1} }},} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mu_{1,1} = \frac{{\lambda_{1} + \lambda_{2} - E_{1} - E_{2} + \sqrt {D_{a} } }}{2},} & {\mu_{2,1} = \frac{{\lambda_{1} + \lambda_{2} - E_{1} - E_{2} - \sqrt {D_{a} } }}{2},} \\ \end{array} \hfill \\ D_{a} = \left( {E_{1} E_{2} - \lambda_{1} - \lambda_{2} } \right)^{2} - 4\left( {\lambda_{1} \lambda_{2} - E_{1} \lambda_{2} - E_{2} \lambda_{1} } \right) \hfill \\ \end{gathered} $$
(48)

Determination of Supporting Pressures for the Period \(t_{1} \le t \le t_{2}\).

The behavior of the compressible liner is in the second elastic slope (i.e., Ec = Ec2) during this period. The compatibility conditions of displacement at the interface between the rock mass leads to

$$ \begin{gathered} \frac{{R_{1} }}{2}\left\{ {\int_{0}^{{t_{0} }} {p_{0}^{h} } \chi (\tau )H(t_{0} - \tau )d\tau - \int_{0}^{t} {p_{0}^{h} } \chi (\tau )H(t - \tau )d\tau + \int_{{t_{0} }}^{{t_{1} }} {p_{11} (\tau )} H(t - \tau )d\tau + \int_{{t_{1} }}^{t} {p_{12} (\tau )} H(t - \tau )d\tau } \right\}\,\, \hfill \\ = a_{00,1} p_{11} (t_{1} ) + a_{01,1} p_{21} (t_{1} ) + a_{00,2} \left( {p_{12} (t) - p_{11} (t_{1} )} \right) + a_{01,2} \left( {p_{22} (t) - p_{21} (t_{1} )} \right), \hfill \\ \end{gathered} $$
(49)

with

$$ \begin{gathered} a_{00,2} = - \frac{1}{{2G_{L1,2}^{{}} }}\frac{{R_{1}^{{}} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }} - \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,2}^{{}} }}\frac{{R_{1}^{3} }}{{R_{1}^{2} - R_{2}^{2} }}\,{,}\,\,\,\, \hfill \\ a_{01,2} = \frac{1}{{2G_{L1,2}^{{}} }}\frac{{R_{1} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }} + \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,2}^{{}} }}\frac{{R_{1} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }}\,, \hfill \\ \end{gathered} $$
(50)

We develop the compatibility conditions of displacement at the interface between two liners in form

$$ a_{10,1} p_{11} (t_{1} ) + a_{10,1}^{*} p_{21} (t_{1} ) + a_{10,2} \left( {p_{12} (t) - p_{11} (t_{1} )} \right) + a_{10,2}^{*} \left( {p_{22} (t) - p_{21} (t_{1} )} \right) = - (a_{11,2} - a_{10,2}^{*} )p_{22} (t) $$
(51)

which is expressed in a more compact form such as

$$ p_{22} (t) = - \frac{{a_{10,2} p_{12} (t)}}{{a_{11,2} }} + \frac{{(a_{10,2} - a_{10,1} )}}{{a_{11,2} }}p_{11} (t_{1} ) + \frac{{(a_{11,2} - a_{11,1} )}}{{a_{11,2} }}p_{21} (t_{1} ) $$
(52)

with

$$ \begin{gathered} a_{10,2} = - \frac{1}{{2G_{L1,2}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }} - \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,2}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }}\,{,}\,\,\,\, \hfill \\ a_{10,2}^{*} = \frac{1}{{2G_{L1,2}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }} + \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,2}^{{}} }}\frac{{R_{2}^{3} }}{{R_{1}^{2} - R_{2}^{2} }}\,, \hfill \\ a_{11,2} = a_{10,2}^{*} + \frac{1}{{2G_{L2}^{{}} }}\frac{{R_{3}^{2} R_{2}^{{}} }}{{R_{2}^{2} - R_{3}^{2} }} + \frac{{1 + \nu_{L2}^{{}} }}{{K_{L2}^{{}} }}\frac{{R_{2}^{3} }}{{R_{2}^{2} - R_{3}^{2} }}, \hfill \\ \end{gathered} $$
(53)

Substituting Eq. (52) in Eq. (49) and after some developments, the supporting pressure of the outer liner can be written as

$$ \begin{gathered} p_{12} \left( t \right) = \frac{{R_{1} a_{11,2} G_{M} }}{{2G_{M} (a_{00,2} a_{11,2} - a_{01,2} a_{10,2} ) - R_{1} a_{11,2} }}\int_{{t_{1} }}^{t} {(\frac{1}{{\eta_{M} }} + \frac{{\exp ( - G_{K} (t - \tau )/\eta_{K} )}}{{\eta_{K} }})p_{12} (\tau )d\tau } \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} + \frac{{2G_{M} (a_{00,2} a_{11,2} - a_{01,2} a_{10,2} )}}{{2G_{M} (a_{00,2} a_{11,2} - a_{01,2} a_{10,2} ) - R_{1} a_{11,2} }}f_{2}^{*} (t), \hfill \\ \end{gathered} $$
(54)

with

$$ \begin{gathered} f_{2}^{*} \left( t \right) = \frac{{R_{1} a_{11,2} }}{{2(a_{00,2} a_{11,2} - a_{01,2} a_{10,2} )}}\left( {p_{0}^{h} \int\limits_{0}^{{t_{0} }} {\chi (\tau )} H(t_{0} - \tau )d\tau - p_{0}^{h} \int\limits_{0}^{t} {\chi (\tau )} H(t - \tau )d\tau + \int\limits_{{t_{0} }}^{{t_{1} }} {p_{11} (\tau )H(t - \tau )d\tau } } \right) \hfill \\ \begin{array}{*{20}c} {} & {} & { - \frac{{\left( {a_{00,1} - a_{00,2} } \right)a_{11,2} + \left( {a_{10,2} - a_{10,1} } \right)a_{01,2} }}{{\left( {a_{00,2} a_{11,2} - a_{01,2} a_{10,2} } \right)}}} \\ \end{array} p_{11} (t_{1} ) - \frac{{\left( {a_{01,1} - a_{01,2} } \right)a_{11,2} + \left( {a_{11,2} - a_{11,1} } \right)a_{01,2} }}{{\left( {a_{00,2} a_{11,2} - a_{01,2} a_{10,2} } \right)}}p_{21} (t_{1} ), \hfill \\ \end{gathered} $$
(55)

By noting

$$ e_{1,2} = \frac{{R_{1} a_{11,2} G_{M} }}{{2G_{M} \left( {a_{00,2} a_{11,2} - a_{01,2} a_{10,2} } \right) - R_{1} a_{11,2} }} $$
(56)

Eq. (54) becomes

$$ p_{12} \left( t \right) = f_{2} (t) + \int_{{t_{1} }}^{t} {\left( {\frac{{e_{1,2} }}{{\eta_{M} }} + \frac{{e_{1,2} }}{{\eta_{K} }}\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)} \right)p_{12} \left( \tau \right)d\tau } , $$
(57)

with

$$ f_{2} (t) = \frac{{2G_{M} (a_{00,2} a_{11,2} - a_{01,2} a_{10,2} )}}{{2G_{M} (a_{00,2} a_{11,2} - a_{01,2} a_{10,2} ) - R_{1} a_{11,2} }}f_{2}^{*} (t) $$
(58)

The standard integral equation (in Eq. (57)) has the free term \(f_{2}^{{}} (t)\) and the Kernel \(\left( {\frac{{e_{1,2} }}{{\eta_{M} }} + \frac{{e_{1,2} }}{{\eta_{K} }}\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)} \right)\), whereas the corresponding parameters \(E{}_{1},E{}_{2},\lambda_{1} ,\lambda_{2}\) are respectively equal to \(E_{1} = - \frac{{e_{1,2} }}{{\eta_{M} }},\,\,\,\,\,E_{2} = - \frac{{e_{1,2} }}{{\eta_{K} }},\)\(\lambda_{1} = 0,\) \(\lambda_{2} = - \frac{{G_{K} }}{{\eta_{K} }}\).

By using the integral equation (24), the supporting pressure \(p_{12}^{{}} (t)\) takes the following form

$$ p_{12}^{{}} (t) = f_{2}^{{}} (t) + \int_{{t_{1} }}^{t} {\left( {F_{1,2} e^{{\mu_{1,2} (t - \tau )}} + F_{2,2} e^{{\mu_{2,2} (t - \tau )}} } \right)} f_{2}^{{}} (\tau )d\tau , $$
(59)

with

$$ \begin{gathered} \begin{array}{*{20}c} {F_{1,2} = E_{1} \frac{{\mu_{1,2} - \lambda_{2} }}{{\mu_{2,2} - \mu_{1,2} }} + E_{2} \frac{{\mu_{1,2} - \lambda_{1} }}{{\mu_{2,2} - \mu_{1,2} }},} & {F_{2,2} = E_{1} \frac{{\mu_{2,2} - \lambda_{2} }}{{\mu_{1,2} - \mu_{2,2} }} + E_{2} \frac{{\mu_{2,2} - \lambda_{1} }}{{\mu_{1,2} - \mu_{2,2} }},} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mu_{1,2} = \frac{{\lambda_{1} + \lambda_{2} - E_{1} - E_{2} + \sqrt {D_{a} } }}{2},} & {\mu_{2,2} = \frac{{\lambda_{1} + \lambda_{2} - E_{1} - E_{2} - \sqrt {D_{a} } }}{2},} \\ \end{array} \hfill \\ D_{a} = \left( {E_{1} E_{2} - \lambda_{1} - \lambda_{2} } \right)^{2} - 4\left( {\lambda_{1} \lambda_{2} - E_{1} \lambda_{2} - E_{2} \lambda_{1} } \right) \hfill \\ \end{gathered} $$
(60)

Determination of supporting pressures for the period \(t_{2} \le t\).

The compressible liner behaves in the third elastic slope (i.e., Ec = Ec3) in this period. The compatibility conditions of displacement at the interface between the rock mass reads

$$ \begin{gathered} \frac{{R_{1} }}{2}\left\{ {\int_{0}^{{t_{0} }} {p_{0}^{h} } \chi (\tau )H(t_{0} - \tau )d\tau - \int_{0}^{t} {p_{0}^{h} } \chi (\tau )H(t - \tau )d\tau + \int_{{t_{0} }}^{{t_{1} }} {p_{11} (\tau )} H(t - \tau )d\tau + \int_{{t_{1} }}^{{t_{2} }} {p_{12} (\tau )} H(t - \tau )d\tau } \right\}\,\, \hfill \\ + \frac{{R_{1} }}{2}\int_{{t_{2} }}^{t} {p_{13} (\tau )} H(t - \tau )d\tau = a_{00,1} p_{11} (t_{1} ) + a_{01,1} p_{21} (t_{1} ) + a_{00,2} \left( {p_{12} (t_{2} ) - p_{11} (t_{1} )} \right) + a_{01,2} \left( {p_{22} (t_{2} ) - p_{21} (t_{1} )} \right) \hfill \\ + a_{00,3} \left( {p_{13} (t) - p_{12} (t_{2} )} \right) + a_{01,3} \left( {p_{23} (t) - p_{22} (t_{2} )} \right), \hfill \\ \end{gathered} $$
(61)

with

$$ \begin{gathered} a_{00,3} = - \frac{1}{{2G_{L1,3}^{{}} }}\frac{{R_{1}^{{}} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }} - \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,3}^{{}} }}\frac{{R_{1}^{3} }}{{R_{1}^{2} - R_{2}^{2} }}\,{,}\,\,\,\, \hfill \\ a_{01,3} = \frac{1}{{2G_{L1,3}^{{}} }}\frac{{R_{1} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }} + \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,3}^{{}} }}\frac{{R_{1} R_{2}^{2} }}{{R_{1}^{2} - R_{2}^{2} }}\,, \hfill \\ \end{gathered} $$
(62)

The compatibility conditions of displacement at the interface between two liners is developed as

$$ \begin{gathered} a_{10,1} p_{11} (t_{1} ) + a_{10,1}^{*} p_{21} (t_{1} ) + a_{10,2} \left( {p_{12} (t_{2} ) - p_{11} (t_{1} )} \right) + a_{10,2}^{*} \left( {p_{22} (t_{2} ) - p_{21} (t_{1} )} \right) + a_{10,3} \left( {p_{13} (t) - p_{12} (t_{2} )} \right) \hfill \\ + a_{10,3}^{*} \left( {p_{23} (t) - p_{22} (t_{2} )} \right) = - (a_{11,3} - a_{10,3}^{*} )p_{23} (t) \hfill \\ \end{gathered} $$
(63)

which can be rewritten in a more compact form as follows

$$ \begin{gathered} p_{23} (t) = - \frac{{a_{10,3} p_{13} (t)}}{{a_{11,3} }} + \frac{{\left( {a_{10,2} - a_{10,1} } \right)p_{11} (t_{1} )}}{{a_{11,3} }} + \frac{{\left( {a_{11,2} - a_{11,1} } \right)p_{21} (t_{1} )}}{{a_{11,3} }} \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} + \frac{{\left( {a_{10,3} - a_{10,2} } \right)p_{12} (t_{2} )}}{{a_{11,3} }} + \frac{{\left( {a_{11,3} - a_{11,2} } \right)p_{22} (t_{2} )}}{{a_{11,3} }}, \hfill \\ \end{gathered} $$
(64)

with

$$ \begin{gathered} a_{10,3} = - \frac{1}{{2G_{L1,3}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }} - \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,3}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }}\,{,}\,\,\, \hfill \\ \,a_{10,3}^{*} = \frac{1}{{2G_{L1,3}^{{}} }}\frac{{R_{1}^{2} R_{2}^{{}} }}{{R_{1}^{2} - R_{2}^{2} }} + \frac{{1 + \nu_{L1}^{{}} }}{{K_{L1,3}^{{}} }}\frac{{R_{2}^{3} }}{{R_{1}^{2} - R_{2}^{2} }}\,, \hfill \\ a_{11,3} = a_{10,3}^{*} + \frac{1}{{2G_{L2}^{{}} }}\frac{{R_{3}^{2} R_{2}^{{}} }}{{R_{2}^{2} - R_{3}^{2} }} + \frac{{1 + \nu_{L2}^{{}} }}{{K_{L2}^{{}} }}\frac{{R_{2}^{3} }}{{R_{2}^{2} - R_{3}^{2} }}, \hfill \\ \end{gathered} $$
(65)

Substituting Eq. (64) in Eq. (61) and after some developments, one deduces the following supporting pressure of the first liner

$$ \begin{gathered} p_{13} \left( t \right) = \frac{{R_{1} a_{11,3} G_{M} }}{{2G_{M} (a_{00,3} a_{11,3} - a_{01,3} a_{10,3} ) - R_{1} a_{11,3} }}\int_{{t_{2} }}^{t} {(\frac{1}{{\eta_{M} }} + \frac{{\exp ( - G_{K} (t - \tau )/\eta_{K} )}}{{\eta_{K} }})p_{13} (\tau )d\tau } \hfill \\ \begin{array}{*{20}c} {} & {} & {} \\ \end{array} + \frac{{2G_{M} (a_{00,3} a_{11,3} - a_{01,3} a_{10,3} )}}{{2G_{M} (a_{00,3} a_{11,3} - a_{01,3} a_{10,3} ) - R_{1} a_{11,3} }}f_{3}^{*} (t), \hfill \\ \end{gathered} $$
(66)

with

$$ \begin{gathered} \begin{array}{*{20}c} {} & {f_{3}^{*} \left( t \right) = } & { - \frac{{\left( {a_{00,1} - a_{00,2} } \right)a_{11,3} + \left( {a_{10,2} - a_{10,1} } \right)a_{01,3} }}{{\left( {a_{00,3} a_{11,3} - a_{01,3} a_{10,3} } \right)}}} \\ \end{array} p_{11} (t_{1} ) \hfill \\ - \frac{{\left( {a_{01,1} - a_{01,2} } \right)a_{11,3} + \left( {a_{11,2} - a_{11,1} } \right)a_{01,3} }}{{\left( {a_{00,3} a_{11,3} - a_{01,3} a_{10,3} } \right)}}p_{21} (t_{1} ) \hfill \\ - \frac{{\left( {a_{00,2} - a_{00,3} } \right)a_{11,3} + \left( {a_{10,3} - a_{10,2} } \right)a_{01,3} }}{{\left( {a_{00,3} a_{11,3} - a_{01,3} a_{10,3} } \right)}}p_{12} (t_{2} ) \hfill \\ - \frac{{\left( {a_{01,2} - a_{01,3} } \right)a_{11,3} + \left( {a_{11,3} - a_{11,2} } \right)a_{01,3} }}{{\left( {a_{00,3} a_{11,3} - a_{01,3} a_{10,3} } \right)}}p_{22} (t_{2} ) \hfill \\ + \frac{{R_{1} a_{11,3} }}{{2(a_{00,3} a_{11,3} - a_{01,3} a_{10,3} )}}\left( {p_{0}^{h} \int\limits_{0}^{{t_{0} }} {\chi (\tau )} H(t_{0} - \tau )d\tau - p_{0}^{h} \int\limits_{0}^{t} {\chi (\tau )} H(t - \tau )d\tau } \right) \hfill \\ + \frac{{R_{1} a_{11,3} }}{{2(a_{00,3} a_{11,3} - a_{01,3} a_{10,3} )}}\left( {\int\limits_{{t_{0} }}^{{t_{1} }} {p_{11} (\tau )H(t - \tau )d\tau } + \int\limits_{{t_{1} }}^{{t_{2} }} {p_{12} (\tau )H(t - \tau )d\tau } } \right) \hfill \\ \end{gathered} $$
(67)

Noting

$$ e_{1,3} = \frac{{R_{1} a_{11,3} G_{M} }}{{2G_{M} \left( {a_{00,3} a_{11,3} - a_{01,3} a_{10,3} } \right) - R_{1} a_{11,3} }} $$
(68)

Thus Eq. (66) becomes

$$ p_{13} \left( t \right) = f_{3} (t) + \int_{{t_{1} }}^{t} {\left( {\frac{{e_{1,3} }}{{\eta_{M} }} + \frac{{e_{1,3} }}{{\eta_{K} }}\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)} \right)p_{13} \left( \tau \right)d\tau } , $$
(69)

with

$$ f_{3} (t) = \frac{{2G_{M} (a_{00,3} a_{11,3} - a_{01,3} a_{10,3} )}}{{2G_{M} (a_{00,3} a_{11,3} - a_{01,3} a_{10,3} ) - R_{1} a_{11,3} }}f_{3}^{*} (t) $$
(70)

We has now the standard integral equation (69) with the free term \(f_{3}^{{}} (t)\) and the Kernel \(\left( {\frac{{e_{1,3} }}{{\eta_{M} }} + \frac{{e_{1,3} }}{{\eta_{K} }}\exp \left( { - \frac{{G_{K} }}{{\eta_{K} }}(t - \tau )} \right)} \right)\), whereas the corresponding parameters \(E{}_{1},E{}_{2},\lambda_{1} ,\lambda_{2}\) are respectively equal to \(E_{1} = - \frac{{e_{1,3} }}{{\eta_{M} }},\,\,\,\,\,E_{2} = - \frac{{e_{1,3} }}{{\eta_{K} }},\)\(\lambda_{1} = 0,\) \(\lambda_{2} = - \frac{{G_{K} }}{{\eta_{K} }}\).

The solution \(p_{13}^{{}} (t)\) takes the same form of Eq. (24), i.e.

$$ p_{13}^{{}} (t) = f_{3}^{{}} (t) + \int_{{t_{2} }}^{t} {\left( {F_{1,3} e^{{\mu_{1,3} (t - \tau )}} + F_{2,3} e^{{\mu_{2,3} (t - \tau )}} } \right)} f_{3}^{{}} (\tau )d\tau , $$
(71)

with

$$ \begin{gathered} \begin{array}{*{20}c} {F_{1,3} = E_{1} \frac{{\mu_{1,3} - \lambda_{2} }}{{\mu_{2,3} - \mu_{1,3} }} + E_{2} \frac{{\mu_{1,3} - \lambda_{1} }}{{\mu_{2,3} - \mu_{1,3} }},} & {F_{2,3} = E_{1} \frac{{\mu_{2,3} - \lambda_{2} }}{{\mu_{1,3} - \mu_{2,3} }} + E_{2} \frac{{\mu_{2,3} - \lambda_{1} }}{{\mu_{1,3} - \mu_{2,3} }},} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mu_{1,3} = \frac{{\lambda_{1} + \lambda_{2} - E_{1} - E_{2} + \sqrt {D_{a} } }}{2},} & {\mu_{2,3} = \frac{{\lambda_{1} + \lambda_{2} - E_{1} - E_{2} - \sqrt {D_{a} } }}{2},} \\ \end{array} \hfill \\ D_{a} = \left( {E_{1} E_{2} - \lambda_{1} - \lambda_{2} } \right)^{2} - 4\left( {\lambda_{1} \lambda_{2} - E_{1} \lambda_{2} - E_{2} \lambda_{1} } \right) \hfill \\ \end{gathered} $$
(72)

1.1 Determination of the unknown time instants t 1 and t 2

Following the definition of the tri-linear elastic behavior of the compressible liner (Eq. (3)), the two unknown time parameters t1 and t2 correspond to the instant at which the elastic behavior of the first liner changes from the first to the second slope and from the second to the third slope, respectively. Correspondingly, these two-time instants are calculated from the following condition

$$ \varepsilon_{v} (t) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{\lim 1} } & {if} & {t = t_{1} ,} \\ {\varepsilon_{\lim 2} } & {if} & {t = t_{2} ,} \\ \end{array} } \right. $$
(73)

Using Eq. (18), the first time instant t1 can be determined from the following equation

$$ \varepsilon_{v1} (t_{1} ) = \frac{{2\left( {1 + \nu_{c} } \right)\left( {R_{2}^{2} p_{21} (t_{1} ) - R_{1}^{2} p_{11} (t_{1} )} \right)}}{{K_{c1} (R_{1}^{2} - R_{2}^{2} )}} = \varepsilon_{\lim 1} , $$
(74)

whilst Eq. (19) allows deriving the second time instant t2 from the following equation

$$ \varepsilon_{v2} (t_{2} ) = \varepsilon_{\lim 1} + \frac{{2\left( {1 + \nu_{c} } \right)\left( {R_{2}^{2} \left( {p_{22} (t_{2} ) - p_{21} (t_{1} )} \right) - R_{1}^{2} \left( {p_{12} (t_{2} ) - p_{11} (t_{1} )} \right)} \right)}}{{K_{c2} (R_{1}^{2} - R_{2}^{2} )}} = \varepsilon_{\lim 2} , $$
(75)

Regarding the formula of p11(t), p21(t), one can state that the equation to determine t1 (Eq. (74)) is nonlinear. It is also the case for the determination of the second time instant t2 by substituting the expressions of p11(t), p21(t), p12(t), p22(t) in Eqs. ((45), (40), (57), (52)) into Eq. (75). The numerical solution of these nonlinear equations can be conducted without difficulty by using one of the common solvers (Matlab, Mathematical, Excel, etc.).

Figure 12 summarizes the principal steps to derive the tunnel convergence and stress state in the concrete liner.

Fig. 12
figure 12

Flowchart of the closed-form solution of tunnel convergence and stress state in the concrete liner

Appendix B: Kriging metamodeling technique

The principal idea of the Kriging metamodeling technique lies on the approximation of the LSF by a surrogate (a Gaussian process) (Matheron 1973; Echard et al. 2011; Bichon et al. 2011) written in the form:

$$ G({\text{X}}) \approx \overline{G} ({\text{X}}) = {\text{k}}({\text{X}})^{T} {\upbeta } + Z({\text{X}}) = \sum\limits_{i}^{n} {\beta_{i} k_{i} ({\text{X}}) + Z({\text{X}})} $$
(76)

In Eq. (76), β and k(X) are the vectors of the regression coefficient and the vector of basis-functions of n elements while the first term k(X)Tβ represents the mean value of the Gaussian process (i.e., the trend of the process). The second term Z(X) is assumed to have the zero-mean stationary Gaussian process and variance \(C_{{ZZ}} ({\mathbf{X}},{\mathbf{X}}') = \sigma _{Z}^{2} R({\mathbf{\theta }},{\mathbf{X}},{\mathbf{X}}^\prime )\), with \(\sigma_{Z}^{2}\) constant process variance, and the kernel function R(θ, X, X’) presents the prescribed auto-correlation function with respect to the hyperparameter vector \({{\varvec{\uptheta}}}\). Among the different functions proposed in the literature, the following squared exponential auto-correlation (Gaussian) function is selected:

$$ R\left( {{{\varvec{\uptheta}}};{\text{X}},{\text{ X}}^{\prime}} \right) = \prod\limits_{i = 1}^{d} {\exp \left[ { - \theta_{i} \left( {X_{i}^{{}} - X_{i}^{^{\prime}} } \right)^{2} } \right]} $$
(77)

where d is the dimension of the random variable vector X, and Xi, θi (i = 1, …, d) is the i-th component of X and \({{\varvec{\uptheta}}}\).

The necessary unknown parameters \(\sigma_{Z}^{2} ,{{\varvec{\upbeta}}},{{\varvec{\uptheta}}}\) to construct the Kriging metamodel \(\overline{G} ({\text{X}})\) in Eq. (76) can be calibrated from an optimization process by using the exact results (gathered in a vector y) of the performance function \(G({\text{X}})\) that are evaluated at different observation points (called the training points). Initially, the data of these training points (gathered in a matrix S) can be generated from the Latin Hypercube Sampling (LHS) technique. Then, the construction step of these data (or the matrix S), also known as the Design of Experiment (DoE), is iteratively updated by adding the new training points by using a so-called learning function. Meanwhile, the Kriging metamodel \(\overline{G} ({\text{X}})\) is built in an iterative manner until a convergence criterion is satisfied. Note that the calibration of the hyperparameters \(\sigma_{Z}^{2} ,{{\varvec{\upbeta}}},{{\varvec{\uptheta}}}\) (i.e., the optimization process) was successfully implemented in many software. In our study here, the well-known MATLAB toolbox DACE developed by (Lophaven et al. 2002) is chosen.

Based on the constructed metamodel \(\overline{G} ({\text{X}})\), the performance function can be predicted for any realization of the random input vector X, which follows the Normal distribution. More precisely, Kriging predictor provides the following mean and variance values \(\left( {\mu_{{\overline{G} }} ({\text{X}}),\sigma_{{\overline{G} }}^{2} ({\text{X}})} \right)\)(Lophaven et al. 2002; Gaspar et al. 2015):

$$ \begin{gathered} \mu_{{\overline{G} }} ({\text{X}}) = {\text{k}}({\text{X}})^{T} \overline{{\upbeta }} {\text{ + r}}({\text{X}})^{T} {\mathbf{R}}^{ - 1} ({\text{y - }}{\mathbf{K}}\overline{{\upbeta }} ) \hfill \\ \sigma_{{\overline{G} }}^{2} ({\text{X}}) = \sigma_{Z}^{2} \left( {1 - {\text{r}}({\text{X}})^{T} {\mathbf{R}}^{ - 1} {\text{r}}({\text{X}}) + {\text{u}}({\text{X}})^{T} ({\mathbf{K}}^{T} {\mathbf{R}}^{ - 1} {\mathbf{K}})^{ - 1} {\text{u}}({\text{X}})} \right) \hfill \\ \end{gathered} $$
(78)

with:

$$ \begin{array}{*{20}c} {\overline{{\upbeta }} = ({\text{K}}^{T} {\mathbf{R}}^{ - 1} {\text{K}})^{ - 1} {\text{K}}^{T} {\mathbf{R}}^{ - 1} {\text{y,}}} & {{\text{u}}({\text{X}}) = } \\ \end{array} {\text{K}}^{T} {\mathbf{R}}^{ - 1} {\text{r}}({\text{X}}) - {\text{k}}({\text{X}}) $$
(79)

In Eqs. (78) and (79), R is the matrix of correlation between each pair of NDoE training points of DoE while K and r(X) are the regression matrix and the vector of cross-correlation between the prediction point X and each training point of DoE:

$$ \begin{gathered} \begin{array}{*{20}c} {y_{i} = G({\mathbf{X}}^{(i)} ),} & {i = 1,...,N_{DoE} } \\ \end{array} \hfill \\ r_{i} ({\mathbf{X}}){\mathbf{ = }}R({{\varvec{\uptheta}}},{\mathbf{X}},{\mathbf{X}}^{(i)} ), \, i = 1,...,N_{DoE} \hfill \\ \begin{array}{*{20}c} {R_{ij} = R({{\varvec{\uptheta}}},{\mathbf{X}}^{(i)} ,{\mathbf{X}}^{(j)} ),} & {i,j = 1,...,N_{DoE} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {K_{ij} = k_{j} ({\mathbf{X}}^{(i)} ),} & {i = 1,...,N_{DoE} ,} & {j = 1,...,n} \\ \end{array} \hfill \\ \end{gathered} $$
(80)

The interpolation (by using Kriging predictor \(\overline{G} ({\text{X}})\)) with respect to NMCS random samples generated from the sampling MCS technique allows to estimate the failure probability:

$$ \begin{array}{*{20}c} {P_{f} \approx \frac{1}{{N_{MCS} }}\sum\limits_{i = 1}^{{N_{MCS} }} {{\mathbf{I}}\left( {\overline{G} ({\text{X}}^{(i)} )} \right)} ,} & {{\mathbf{I}}\left( {\overline{G} ({\text{X}}^{(i)} )} \right) = \left\{ {\begin{array}{*{20}c} 1 & {if} & {\mu_{{\overline{G} }} ({\text{X}}^{(i)} ) \le 0} \\ 0 & {if} & {\mu_{{\overline{G} }} ({\text{X}}^{(i)} ) > 0} \\ \end{array} } \right.} \\ \end{array} $$
(81)

For the sake of clarity, Table

Table 3 Principal steps for the Kriging-based reliability analysis

3 is summarized the essential steps to conduct an iterative Kriging-based reliability analysis. Follow that, it is necessary to define a stopping criterion to verify the convergence of the process (step 6) and an appropriate learning function to find out the best new training points X* to enrich the DoE and hence the Kriging metamodel (step 7). The following stopping criterion proposed by (Gaspar et al. 2015) is chosen:

$$ \begin{array}{*{20}c} {\frac{{\left| {P_{f}^{(i)} - P_{f}^{(1)} } \right|}}{{P_{f}^{(1)} }} \le \gamma ,} & {\forall i \in \left\{ {2,...,N_{\gamma } } \right\}} \\ \end{array} $$
(82)

where Pf(1) is the chosen reference value that is used to detect the stabilization of failure probability whilst Pf(i) (i = 2, …, Nγ) are the failure probability in the next (Nγ1) iterations. The parameters = γ0.01 and Nγ = 10 are sufficient to ensure the accuracy of the obtained probability of failure.

To enrich the DoE, we base on the U-learning function, initially proposed in the well-known AK-MCS method of (Echard et al. 2011), to choose the appropriate new training points. In fact, this function, defined as

$$ U({\text{X}}) = \frac{{\left| {\mu_{{\overline{G} }} ({\text{X}})} \right|}}{{\sigma_{{\overline{G} }} ({\text{X}})}} $$
(83)

That measures the probability of making a mistake on the sign of \(G({\text{X}})\), by substituting \(G({\text{X}})\) with \(\overline{G} ({\text{X}})\). Thus, according to (Echard et al. 2011), the best choice of new training points X*, are the samples that give the lowest U-value among NMCS samples (i.e., X* = argmin{U(X)}).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, DP., Vu, MN., Tran, NT. et al. Closed-Form Solution and Reliability Analysis of Deep Tunnel Supported by a Concrete Liner and a Covered Compressible Layer Within the Viscoelastic Burger Rock. Rock Mech Rock Eng 54, 2311–2334 (2021). https://doi.org/10.1007/s00603-021-02401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02401-6

Keywords

Navigation