Skip to main content
Log in

Experimental Study on the Shear Mechanical Behavior of Sandstone Under Normal Tensile Stress Using a New Double-Shear Testing Device

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

σ n :

Normal stress

τ :

Shear stress

F n :

Normal force

F s :

Shear force

S :

Sectional area of rock sample

D p :

Peak shear displacement

σ t :

Uniaxial tensile strength

n :

Fitting parameter

τ f :

Shear strength

A, B :

Fitting constants

φ :

Internal friction angle

c :

Cohesion

References

  • Aimone-Martin CT, Oravecz KI, Nytra TK (1997) A mechanical device for the measurement of combined shear and tension in rocks. Int J Rock Mech Min Sci 34(1):147–151

    Article  Google Scholar 

  • Cen D, Huang D (2017) Direct shear tests of sandstone under constant normal tensile stress condition using a simple auxiliary device. Rock Mech Rock Eng 50(6):1425–1438

    Article  Google Scholar 

  • Fossen H, Tikoff B (1998) Extended models of transpression and transtension, and application to tectonic settings. Geol Soc Lond Spec Publ 135(1):15–33

    Article  Google Scholar 

  • Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock-a review. J Rock Mech Geotech Eng 6(4):287–300

    Article  Google Scholar 

  • Huang RQ, Huang D (2014) Evolution of rock cracks under unloading condition. Rock Mech Rock Eng 47(2):453–466

    Article  Google Scholar 

  • Huang D, Zhu TT (2018) Experimental and numerical study on the strength and hybrid fracture of sandstone under tension-shear stress. Eng Fract Mech 200:387–400

    Article  Google Scholar 

  • Huang RQ, Wu LZ, He Q, Li JH (2017) Stress intensity factor analysis and the stability of overhanging rock. Rock Mech Rock Eng 50(8):2135–2142

    Article  Google Scholar 

  • Labuz JF, Zang A (2012) Mohr–Coulomb failure criterion. Rock Mech Rock Eng 45(6):975–979

    Article  Google Scholar 

  • Lee CF, Wong S, Yang Z (1996) Geotechnical aspects of rock tunneling in China. Tunn Undergr Sp Technol 11(4):445–454

    Article  Google Scholar 

  • Liolios P, Exadaktylos G (2013) A smooth hyperbolic failure criterion for cohesive-frictional materials. Int J Rock Mech Min Sci 58(1):85–91

    Article  Google Scholar 

  • Okay AI, Tüysüz O, Kaya Ş (2004) From transpression to transtension: Changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara region. Tectonophysics 391(1–4):259–282

    Article  Google Scholar 

  • Paronuzzi P, Serafini W (2009) Stress state analysis of a collapsed overhanging rock slab: a case study. Eng Geol 108(1):65–75

    Article  Google Scholar 

  • Paterson MS, Wong TF (2005) Experimental rock deformation-The brittle field. Mineral Mag 43(326):317–317

    Google Scholar 

  • Ramsey JM, Chester FM (2004) Hybrid fracture and the transition from extension fracture to shear fracture. Nature 428(6978):63–66

    Article  Google Scholar 

  • Suits LD, Sheahan TC, Vesga LF (2009) Direct tensile-shear test (DTS) on unsaturated kaolinite clay. Geotech Test J 32(5):397–409

    Google Scholar 

  • USGS (1996) Landslide types and processes. Special Report-National Research Council. Transp Res Board 247:36–75

    Google Scholar 

  • Wu LZ, Shao GQ, Huang RQ, He Q (2018) Overhanging rock: theoretical, physical and numerical modeling. Rock Mech Rock Eng 51(11):3585–3597

    Article  Google Scholar 

  • Wyllie DC (1980) Toppling rock slope failures examples of analysis and stabilization. Rock Mech 13(2):89–98

    Article  Google Scholar 

  • Zerathe S, Lebourg T, Braucher R, Bourles D (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127

    Article  Google Scholar 

  • Zhang C, Feng XT, Zhou H, Qiu S, Wu W (2012) Case histories of four extremely intense rockbursts in deep tunnels. Rock Mech Rock Eng 45(3):275–288

    Article  Google Scholar 

  • Zhao Y, Xu M, Guo J, Zhang Q, Zhao H, Kang X, Xia Q (2015) Accumulation characteristics, mechanism, and identification of an ancient translational landslide in China. Landslides 12:1119–1130

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by the Fundamental Research Funds for the Central Universities (No. 106112017CDJXSYY002), the Graduate Research and Innovation Foundation of Chongqing, China (No. CYB17043), the National Natural Science Foundation of China (Nos. 41472245, 41672300), and the Scientific Research Foundation of State Key Lab. of Coal Mine Disaster Dynamics and Control (No. 2011DA105287-MS201502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tantan Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Zhu, T. Experimental Study on the Shear Mechanical Behavior of Sandstone Under Normal Tensile Stress Using a New Double-Shear Testing Device. Rock Mech Rock Eng 52, 3467–3474 (2019). https://doi.org/10.1007/s00603-019-01762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01762-3

Keywords

Navigation