Skip to main content
Log in

A New Rock Brittleness Evaluation Index Based on the Internal Friction Angle and Class I Stress–Strain Curve

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

\({B_i}\) :

Brittleness index

\({\sigma _{\text{p}}}\) :

Peak strength

\({\sigma _{\text{r}}}\) :

Residual strength

E :

Elasticity modulus

M :

Post-peak modulus

\({\varepsilon _{\text{p}}}\) :

Peak strain

\({\varepsilon _{\text{r}}}\) :

Residual strain

\({k_1}\) :

Ratio of the elasticity modulus to the post-peak modulus

\({k_2}\) :

Ratio of the post-peak stress drop to the peak stress

\(\rho\) :

Density

\(\upsilon\) :

Poisson ratio

\({\sigma _{\text{t}}}\) :

Tensile strength

\({\sigma _{\text{c}}}\) :

Uniaxial compression strength

\({\sigma _1}\) :

Major principal stress

\({\sigma _3}\) :

Confining pressure

m :

Material constant for a specific rock in the Hoek–Brown criterion

s :

Material constant for a specific rock in the Hoek–Brown criterion

\(\varphi\) :

Internal friction angle

References

  • Altindag R (2010) Assessment of some brittleness indexes in rock-drilling efficiency. Rock Mech Rock Eng 43(3):361–370

    Article  Google Scholar 

  • Andreev GE (1995) Brittle failure of rock materials. CRC Press, Florida

    Google Scholar 

  • Bishop AW (1967) Progressive failure with special reference to the mechanism causing it. In: Proceedings of the geotechnical conference, Oslo. vol 2. p 142–150

  • Goktan RM, Yilmaz NG (2005) A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency. J S Afr I Min Metall 105(10):727–732

    Google Scholar 

  • Gong QM, Zhao J (2007) Influence of rock brittleness on TBM penetration rate in Singapore granite. Tunn Undergr Sp Tech 22(3):317–324

    Article  Google Scholar 

  • Hajiabdolmajid V, Kaiser P (2003) Brittleness of rock and stability assessment in hard rock tunneling. Tunn Undergr Sp Tech 18(1):35–48

    Article  Google Scholar 

  • Honda H, Sanada Y (1956) Hardness of coal. Fuel 35(4):451–461

    Google Scholar 

  • Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstr 11(10):389–392

    Article  Google Scholar 

  • Hudson JA, Brown ET, Fairhurst C (1971) Optimizing the control of rock failure in servo-controlled laboratory tests. Rock Mech Rock Eng 3(4):217–224

    Article  Google Scholar 

  • Jarvie DM, Hill RJ, Ruble TE et al (2007) Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91(4):475–499

    Article  Google Scholar 

  • Jin XC, Shah SN, Roegiers J et al (2014) Fracability evaluation in shale reservoirs-an integrated petrophysics and geomechanics approach. SPE J 20(3):518–526

    Article  Google Scholar 

  • Labuz JF, Biolzi L (2007) Experiments with rock: remarks on strength and stability issues. Int J Rock Mech Min Sc 44(4):525–537

    Article  Google Scholar 

  • Lawn BR, Marshall DB (1979) Hardness, toughness, and brittleness: an indentation analysis. J Am Ceram Soc 62(7):347–350

    Article  Google Scholar 

  • Ma XD, Haimson BC (2017) Failure characteristics of compactive, porous sandstones subjected to true triaxial stresses. J Geophys Res 121(9):6477–6498

    Article  Google Scholar 

  • Meng FZ, Zhou H, Zhang CQ et al (2015) Evaluation methodology of brittleness of rock based on post-peak stress–strain curves. Rock Mech Rock Eng 48(5):1787–1805

    Article  Google Scholar 

  • Munoz H, Taheri A (2017) Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation. JRMGE 9(4):599–610

    Google Scholar 

  • Munoz H, Taheri A, Chanda EK (2016a) Fracture energy-based brittleness index development and brittleness quantification by pre-peak strength parameters in rock uniaxial compression. Rock Mech Rock Eng 49(12):4587–4606

    Article  Google Scholar 

  • Munoz H, Taheri A, Chanda EK (2016b) Rock drilling performance evaluation by an energy dissipation based rock brittleness index. Rock Mech Rock Eng 49(8):3343–3355

    Article  Google Scholar 

  • Quinn JB, Quinn GD (1997) Indentation brittleness of ceramics: a fresh approach. J Mater Sci 32(16):4331–4346

    Article  Google Scholar 

  • Tarasov BG, Potvin Y (2013) Universal criteria for rock brittleness estimation under triaxial compression. Int J Rock Mech Min Sci 59:57–69

    Google Scholar 

  • Wang FP, Gale JF (2009) Screening criteria for shale-gas systems: Gulf Coast Association of Geological Societies Transactions, v. 59, pp 779–793

  • Wawersik WR, Brace WF (1971) Post-failure behavior of a granite and diabase. Rock Mech Rock Eng 3(2):61–85

    Article  Google Scholar 

  • Xia YJ, Li LC, Tang CA et al (2017) A new method to evaluate rock mass brittleness based on stress–strain curves of class I. Rock Mech Rock Eng 50(5):1123–1139

    Article  Google Scholar 

  • Yagiz S (2009) Assessment of brittleness using rock strength and density with punch penetration test. Tunn Undergr Sp Tech 24(1):66–74

    Article  Google Scholar 

  • Yarali O, Kahraman S (2011) The drillability assessment of rocks using the different brittleness values. Tunn Undergr Sp Tech 26(2):406–414

    Article  Google Scholar 

  • Zhang DC, Ranjith PG, Perera MSA (2016) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review. J Petrol Sci Eng 143:158–170

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Program on Key Basic Research Project of China (2014CB046902) and the National Natural Science Foundation of China (51427803 and 51404240). Partial support from the Youth Innovation Promotion Association CAS is gratefully acknowledged. The authors are also grateful to the journal editor and the reviewers for their insightful comments and suggestions for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Chen, J., Lu, J. et al. A New Rock Brittleness Evaluation Index Based on the Internal Friction Angle and Class I Stress–Strain Curve. Rock Mech Rock Eng 51, 2309–2316 (2018). https://doi.org/10.1007/s00603-018-1487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1487-0

Keywords

Navigation