Skip to main content
Log in

Landslide Spreading, Impulse Water Waves and Modelling of the Vajont Rockslide

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Landslides can occur in different environments and can interact with or fall into water reservoirs or open sea with different characteristics. The subaerial evolution and the transition from subaerial to subaqueous conditions can strongly control the landslide evolution and the generated impulse waves, and consequently the final hazard zonation. We intend to model the landslide spreading, the impact with the water surface and the generation of the impulse wave under different 2D and 3D conditions and settings. We verify the capabilities of a fully 2D and 3D FEM ALE approach to model and analyse near-field evolution. To this aim we validate the code against 2D laboratory experiments for different Froude number conditions (Fr = 1.4, 3.2). Then the Vajont rockslide (Fr = 0.26–0.75) and the consequent impulse wave are simulated in 2D and 3D. The sliding mass is simulated as an elasto-plastic Mohr–Coulomb material and the lake water as a fully inviscid low compressibility fluid. The rockslide model is validated against field observations, including the total duration, the profile and internal geometry of the final deposit, the maximum water run-up on the opposite valley flank and on the rockslide mass. 2D models are presented for both the case of a dry valley and that of the impounded lake. The set of fully 3D simulations are the first ones available and considering the rockslide evolution, propagation and interaction with the water reservoir. Advantages and disadvantages of the modelling approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abadie S, Morichon D, Grilli S, Glockner S (2010) Numerical simulation of waves generated by landslides using a multiple-fluid-Navier-Stokes model. Coast Eng 57:779–794

    Article  Google Scholar 

  • Alonso EE, Pinyol NM (2010) Criteria for rapid sliding I. A review of Vajont case. Eng Geol 114(3):198–210

    Article  Google Scholar 

  • Alonso EE, Pinyol NM, Puzrin AM (2010) Catastrophic slide: Vaiont landslide, Italy. In: Alonso EE, Pinyol NM, Puzrin AM (eds) Geomechanics of failures. Advanced topics. Springer, The Netherlands, pp 33–81

  • Ataie-Ashtiani B, Malek-Mohammadi S (2007) Near field amplitude of sub-aerial landslide generated waves in dam reservoirs. Dam Eng 17(4):197–222

    Google Scholar 

  • Ataie-Ashtiani B, Nik-Khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280

  • Barla G, Antolini F, Barla M, Mensi E, Piovano G (2010) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng Geol 116(3):218–235

    Article  Google Scholar 

  • Belloni LG, Stefani R (1987) The Vajont slide: Instrumentation—Past experience and the modern approach. Eng Geol 24(1):445–474

  • Blikra LH (2012) The Åknes rockslide, Norway. In: Clague JJ, Stead D (eds) Landslides: types: mechanisms and modeling. Cambridge University Press, Cambridge, pp 323–335

    Chapter  Google Scholar 

  • Blikra L, Longva O, Harbitz C, Løvholt F (2005) Quantification of rock-avalanche and tsunami hazard in storfjorden, Western Norway. In: Flaate K, Larsen J, Senneset K (eds.). Landslides and avalanches, ICFL 2005 Norway. CRC press, pp 57–64

  • Blikra LH, Longva O, Braathen A, Anda E, Dehls J, Stalsberg K (2006) Rock-slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In: Evans SG, Scarascia Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Science Series IV, Earth and Environmental Sciences, 49, pp 475–496

  • Boon CW, Houlsby GT, Utili S (2014) New insights in the 1963 Vajont slide using 2D and 3D distinct element method analyses. Geotechnique (in press). doi:10.1680/geot.14.P.041

  • Bosa S, Petti M (2011) Shallow water numerical model of the wave generated by the Vajont landslide. Environ Model Softw 26(4):406–418

    Article  Google Scholar 

  • Bosa S, Petti M (2013) A numerical model of the wave that overtopped the Vajont dam in 1963. Water Resour Manage 27(6):1763–1779

    Article  Google Scholar 

  • Broili L (1967) New knowledge on the geomorphology of the Vaiont slide slip surfaces. Rock Mech Eng Geol J Int Soc Rock Mech V(1):38–88

  • Caloi P (1966) L’evento del Vajont nei suoi aspetti geodinamici. Annali di Geofisica (Annals of Geophysics) 1(19):1–74

    Google Scholar 

  • Calvino F, Gridel H, Roubault M, Stucky A (1967) Relazione dei periti nominate dal G.I. del tribunale di Belluno, in merito alla catastrofe del Vaiont, del 9 ottobre 1963. Unpublished report

  • Catenacci V (1992) Il dissesto geologico e geoambientale in Italia dal dopoguerra al 1990. Da Servizio Geologico Nazionale, Memorie descrittive della Carta Geologica d’Italia, Volume XLVII

  • Chen WF, Han DJ (1988) Plasticity for Structural Engineers. Springer, New York, p 606

  • Ciabatti M (1964) La dinamica della frana del Vaiont. Giornale di Geologia, XXXII (I):139–154

  • Crosta GB, Imposimato S, Roddeman D (2003) Modelling of landslide dynamics and generated water waves EAE03-A-14448; NH5-1FR4P-1777

  • Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns R (eds) NATO ARW, Landslides from massive rock slope failure. NATO Science Series, Earth and Environmental Sciences, vol 49, pp 211–232

  • Crosta GB, Frattini P, Imposimato S, Roddeman DG (2007) 2D and 3D numerical modeling of long runout landslides—the Vajont case study. In: Crosta GB, Frattini P (eds) Landslides: from mapping to loss and risk estimation. IUSS Press, Pavia, pp 15–24

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2008a) Approach to numerical modelling of long runout landslides. In: Proceedings International forum on Landslide Disaster Management, Hong Kong, GCO, 2007, p 20

  • Crosta GB, Imposimato S, Roddeman DG (2008b) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2009) Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J Geophys Res 114:F03020

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D, Frattini P (2012) Landslide/reservoir interaction: 3D numerical modelling of the Vajont rockslide and generated water wave, vol 14, EGU2012-11908. Copernicus GmbH, Göttingen

  • Crosta GB, Imposimato S, Roddeman D (2013) Interaction of landslide mass and water resulting in impulse waves. In: Margottini C, Canuti P, Sassa K (eds), Landslide science and practice, vol 5 complex environment. ISBN 978-3-642-31426-1, 28. doi:10.1007/978-3-642-31427-8. Springer Heidelberg, New York, pp 49–56

  • Crosta GB, Imposimato S, Roddeman D, Frattini P (2013) On controls of flow-like landslide evolution by an erodible layer. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 3: spatial analysis and modelling, ISBN 978-3-642-31426-1,28. doi:10.1007/978-3-642-31427-8, Springer Heidelberg, New York, pp 263–270

  • Cruden DM, Varnes D (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides Investigation and Mitigation: Transportation Research Board Special Report 247, National Research Council. National Academy Press, Washington, DC, pp 36–75

  • Datei C (2003) Vajont. La storia idraulica. Libreria Internazionale Cortina, Padova, p 137, ISBN: 97888778425349, in Italian

  • Davidson DD, McCartney BL (1975) Water waves generated by landslides in reservoirs. J Hydraulics Div 101(12):1489–1501

  • Di Risio M, De Girolamo P, Beltrami GM (2011) Forecasting landslide generated tsunamis. In: Marner NA (ed) Environmental sciences “The Tsunami threat—research and technology”, InTech, ISBN 978-953-307-552-5, pp 81–106

  • Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454

  • Erismann TH, Abele G (2001) Dynamics of rockslides and rockfalls. Springer-Verlag, Berlin Heidelberg 328 pp

    Book  Google Scholar 

  • Ferri F, Di Toro G, Hirose T, Han R, Noda H, Shimamoto T, de Rossi N (2011) Low-to-high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. J Geophys Res: Solid Earth 116:B09208. doi:10.1029/2011JB008338

  • Fritz HM (2002). Initial phase of landslide generated impulse waves. Thesis Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Swiss ETH No. 14’871. Swiss Federal Inst. Techn., Zürich, ISSN 0374-0056

  • Fritz HM, Hager WH, Minor H-E (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003a) Landslide generated impulse waves 1. Instantaneous flow fields. Exp Fluids 35:505–519

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003b) Landslide generated impulse waves 2. Hydrodynamic impact craters. Exp. Fluids 35:520–532

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J. Waterw. Port Coastal Ocean Eng. 130(6):287–302

    Article  Google Scholar 

  • Fritz HM, Mohammed F, Yoo J (2009) Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl Geophys 166(1–2):153–175

  • Ghetti A (1962) Esame sul modello degli effetti di un’eventuale frana el Lago – Serbatoio del Vajont. S.A.D.E. Venezia, Centro Modelli Idraulici E. Scimeni, Ricerca n. 10, p 23

  • Ghirotti, M. (2012) The 1963 Vaiont landslide, Italy. In: JJ Clague, Stead D (eds) Landslides: types, mechanisms and Modeling. Cambridge University Press, pp 359–372

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure Part I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131(6):283–297

    Article  Google Scholar 

  • Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26(4):301–313

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Harbitz CB, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen G, Jensen A (2014) Rockslide tsunamis in complex fjords: From an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast Eng 88:101–122. doi:10.1016/j.coastaleng.2014.02.003

    Article  Google Scholar 

  • Heller V (2007) Landslide generated impulse waves: Prediction of near field characteristics. Thesis, ETH Zürich, Swiss ETH No. 17531. Swiss Federal Inst. Techn., Zürich

  • Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136(3):145–155

  • Heller V, Kinnear RD (2010) Discussion of “Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway” by G. Sælevik, A. Jensen, G. Pedersen [Coastal Eng. 56 (2009) 897–906]. Coast Eng 57(8):773–777

  • Heller V, Spinneken J (2013) Improved landslide-tsunami prediction: Effects of block model parameters and slide model. J Geophys Res Ocean 118:1489–1507. doi:10.1002/jgrc.20099

    Article  Google Scholar 

  • Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geological observations of the failure surface. Tech Rep GL-85–5, vol 2 Department of the Army, US Corps of Engineers, Washington, DC

  • Huber A (1980) Schwallwellen in seen als floge von felssturzen (reservoir impulse waves caused by rockfall), Technical Report Mitteilung 47, Lab. Hydraulics, Hydrology and Glaciology, ETH

  • Huber A, Hager WH (1997) Forecasting impulse waves in reservoirs, Commission Internationale des Grands Barrages, 19 Congres des Grand Barrages. Florence 1997:993–1005

    Google Scholar 

  • Hunter SC (1983) Mechanics of Continuous Media, 2nd edn. Ellis Horwood, Chichester, p 640

  • Ischuk AR (2011) Usoi Rockslide Dam and Lake Sarez, Pamir Mountains, Tajikistan. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds) Natural and artificial rockslide dams. Springer, Heidelberg, pp 423–440

  • Jiang L, LeBlond PH (1993) Numerical modeling of an underwater Bingham plastic mudslide and the wave which it generates. J Geophys Res 98:304–317

    Article  Google Scholar 

  • Jørstad F (1968) Waves generated by landslides in Norwegian Fjords and Lakes. Norwegian Geotechnical Institute publication, Norway, p 79

  • Kalenchuk KS, Hutchinson DJ, Diederichs M, Moore D (2012) Downie slide, British Columbia, Canada. In: Clague JJ, Stead D (eds) Landslides: types mechanisms and modeling. Cambridge University Press, Cambridge, pp 345–357

    Chapter  Google Scholar 

  • Kamphuis JW, Bowering RJ (1970) Impulse waves generated by landslide, Proceedings of 12th coastal engineering conference, pp 575–588

  • Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure appl Geophys 157:899–955

    Article  Google Scholar 

  • Larsen JO (ed) Landslides and avalanches. In: Proceedings of the 11th international conference and field trip on landslides, Norway, 1–10 September 2005. Taylor & Francis Group, London, pp 57–63

  • Liao H, Ying J, Gao S, Sheng Q (2005) Numerical analysis on slope stability under variations of reservoir water level. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides. Risk analysis and sustainable disaster management. Proceedings 1st general assembly int. cons. on landslides, Springer, 304–311

  • Lynett P, Liu PLF (2005). A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110 C03006:16 doi:10.1029/2004JC002443

  • Macfarlane DF (2009) Observations and predictions of the behaviour of large, slowmoving landslides in schist, Clyde Dam reservoir, New Zealand. Eng Geol 109:5–15

    Article  Google Scholar 

  • Miller D (1960) Giant waves in Lituya Bay Alaska. USGS Prof. Paper, 354-C, pp 51–83

  • Müller L (1964) The rock slide in the Vaiont valley. Rock Mech Eng Geol 2(3/4):148–212

    Google Scholar 

  • Müller D (1995). Auflaufen und uberschwappen von impulswellen an talsperren (run-up and overtopping of impulse waves at dams), Technical Report Mitteilung 137, Lab. of Hydraulics, Hydrology and Glaciology, ETH

  • Noda E (1970) Water waves generated by landslides. J Waterw Harb Coast Eng Div ASCE 96 (WW4):835–855

  • Panizzo A, De Girolamo P, Petaccia A (2005a) Forecasting impulse waves generated by subaerial landslides. J Geophys Res Ocean (1978–2012), 110(C12)

  • Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005b) Great landslide events in Italian artificial reservoirs. Nat Hazard Earth Syst Sci 5:733–740

    Article  Google Scholar 

  • Pastor M, Herreros I, Fernández Merodo JA, Mira P, Haddad B, Quecedo M, González E, Alvarez-Cedrón C, Drempetic V (2009) Modelling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes, and reservoirs. Eng Geol 109:124–134

    Article  Google Scholar 

  • Pinyol NM, Alonso EE (2010) Criteria for rapid sliding II.: thermo-hydro-mechanical and scale effects in Vaiont case. Eng Geol 114(3):211–227

    Article  Google Scholar 

  • Plafker G, Eyzaguirre VR (1979) Rock avalanche and wave at Chungar, Peru. In: Voight B (ed) Rockslides and avalanches, vol 2. Developments in Geotechnical Enginering, vol 14B, Elsevier, Amsterdam, the Netherlands, 269–279

  • Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656

    Article  Google Scholar 

  • Roddeman DG (2013) TOCHNOG user’s manual. FEAT, p 255, www.feat.nl/manuals/user/user.html

  • Rossi D, Semenza E (1965) Carte geologiche del versante settentrionale del M. Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963, Scala 1:5000, Ist. Geologia Università di Ferrara, 2 Maps

  • Rossi D, Semenza E (1986) Carta geologica del versante settentrionale del M. Toc e zone limitrofe. In: Masè G, Semenza M, Semenza P, Semenza P, Turrini MC, 2004, Le foto della frana del Vajont. http://www.k-flash.it/editoria_en.html

  • Roubault M. (1967) Esperienze su un modello della Valle del Vaiont. In Calvino et al. (1967), unpublished report

  • Sælevik G, Jensen A, Pedersen G (2009) Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. Coast Eng 56(9):897–906

    Article  Google Scholar 

  • Selli R, Trevisan G (1964) La frana del Vaiont. Annali Mus Geol Serie 2(32):l

  • Semenza E (1965) Sintesi degli studi geologici sulla frana del Vaiont dal 1959 al 1964. Mem Mus Trident Sci Nat, A XXIX–XXX (16), pp 1–51

  • Semenza E (2002) La storia del Vajont. Tecnoproject, Ferrara, p 280 (in Italian)

  • Semenza E (2010) The story of Vajont told by the geologist who discovered the landslide. k-flash Ed, Ferrara, p 205. Available at www.k-flash.it)

  • Semenza E, Ghirotti M (2000) History of 1963 Vaiont Slide. The importance of the geological factors to recognise the ancient landslide. Bull Eng Geol Env 59:87–97

    Article  Google Scholar 

  • Sitar N, MacLaughlin MM, Doolin DM (2005) Influence of kinematics on landslide mobility and failure mode. J Geotech Geoenvir Eng 131(6):716–728

    Article  Google Scholar 

  • Skempton AW (1966) Bedding-plane slip, residual strength and the Vaiont Landslide. Géotechnique XVI(1):82–84

    Article  Google Scholar 

  • Slingerland RL, Voight B (1979) Occurrences, properties, and predict models of landslide-generated water waves. In: Voight B (ed) Rockslides and avalanches 2, vol 14B. Elsevier, Developments in Geotechnical Enginering, Amsterdam, pp 317–397

  • Sosio R, Crosta GB, Hungr O (2012) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9(3):315–334

    Article  Google Scholar 

  • Sue LP, Nokes RI, Walters RA (2006) Experimental modelling of tsunami generated by underwater landslides. Sci Tsunami Hazards 24(4):267–287

  • Superchi L (2012) The Vajont rockslide: new techniques and traditional methods to re-evaluate the catastrophic event. PhD Thesis, Padova University, p 215

  • Tika ThE, Hutchinson JN (1999) Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique 49(1):59–74

    Article  Google Scholar 

  • Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv Water Resour 59:146–156

    Article  Google Scholar 

  • Vardoulakis I (2000) Catastrophic landslides due to frictional heating of the failure plane. Mech Cohes Frict Mater 5:443–467

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Transportation research board special report (176)

  • Veveakis E, Vardoulakis I, Di Toro G (2007) Thermoporomechanics of creeping landslides: the 1963 Vaiont slide, northern Italy. J Geophys Res: Earth Surf 112:F03026. doi:10.1029/2006JF000702

  • Viparelli M, Merla G (1968). L’onda di piena seguita alla frana del Vajont. Università degli Studi di Napoli (in Italian)

  • Viroulet S, Cébron D, Kimmoun O, Kharif C (2013) Shallow water waves generated by subaerial solid landslides. Geophys J Int 193:747–762

    Article  Google Scholar 

  • Votruba L (1966) L’eboulement de la pente gauche dans le lac-reservoir du Vajont. Expert report

  • Wang F, Li T (2009) Landslide disaster mitigation in Three Gorges reservoir. Environmental Science and Engineering, Springer, China, p 563

    Book  Google Scholar 

  • Wang F, Wang G, Sassa K, Takeuchi A, Araiba K, Zhang Y, Peng X (2005) Displacement monitoring and physical exploration on the Shuping Landdslide reactivated by impoundment of the Three Gorges Reservoir, China. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides. Risk analysis and sustainable disaster management. Proceedings 1st general assembly int consortium on landslides, Springer, pp 313–319

  • Wang F, Zhang Y, Huo Z, Peng X, Wang S, Yamasaki S (2008) Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir China. Landslides 5(4):379–386

    Article  Google Scholar 

  • Ward SN, Day S (2003) Ritter Island Volcano—lateral collapse and the tsunami of 1888. Geophys J Int 154:891–902

    Article  Google Scholar 

  • Ward SN, Day S (2011) The 1963 landslide and flood at Vaiont Reservoir Italy. A tsunami ball simulation. Ital J Geosci 130(1):16–26

    Google Scholar 

  • Watts P (1998) Wavemaker curves for tsunamis generated by underwater landslides. J Waterw Port Coast Ocean Eng 124(3):127–137

  • Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152

  • Wiegel RL, Noda EK, Kuba EM, Gee DM, Tornberg GF (1970) Water waves generated by landslide in reservoirs. J Waterw Harb Coast Eng Div ASCE 96 (WW2):307–333

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng Geol 112(1):53–67

    Article  Google Scholar 

  • Zaniboni F, Tinti S (2014) Numerical simulations of the 1963 Vajont landslide, Italy: application of 1D Lagrangian modelling. Nat Hazards 70(1):567–592

    Article  Google Scholar 

  • Zhang D, Wang G, Yang T, Zhang M, Chen S, Zhang F (2013) Satellite remote sensing-based detection of the deformation of a reservoir bank slope in Laxiwa Hydropower Station, China. Landslides 10:231–238. doi:10.1007/s10346-012-0378-9

    Article  Google Scholar 

  • Zhao T, Utili S, Crosta GB (2014) Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses. Rock mechanics, Springer

  • Zweifel A (2004) Impulswellen: Effekte der Rutschdichte und der Wassertiefe. PhD thesis, ETH Zurich, Zurich

Download references

Acknowledgments

This study has been partially funded by the EC Safeland Project, GA No.: 226479, Living with landslide risk in Europe: assessment, effects of global change, and risk management strategies. The research was partially funded by a MIUR-PRIN project: Time–Space prediction of high impact landslides under changing precipitation regimes. The Civil Protection Office of the Friuli Venezia Giulia Region is thanked for providing the ALTM-Lidar dataset of the Vajont valley. Monica Ghirotti and Michele Sapigni are thanked for their support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni B. Crosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosta, G.B., Imposimato, S. & Roddeman, D. Landslide Spreading, Impulse Water Waves and Modelling of the Vajont Rockslide. Rock Mech Rock Eng 49, 2413–2436 (2016). https://doi.org/10.1007/s00603-015-0769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0769-z

Keywords

Navigation