Skip to main content
Log in

Landslide generated impulse waves.

  • Original Paper
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. The challenges posed to the measurement system in an extremely unsteady three-phase flow consisting of granular matter, air, and water were considered. The complex flow phenomena in the first stage of impulse wave initiation are: high-speed granular slide impact, slide deformation and penetration into the fluid, flow separation, hydrodynamic impact crater formation, and wave generation. During this first stage the three phases are separated along sharp interfaces changing significantly within time and space. Digital masking techniques are applied to distinguish between phases thereafter allowing phase separated image processing. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, elongational, and shear strain were extracted from the velocity vector fields. The fundamental assumption of irrotational flow in the Laplace equation was confirmed experimentally for these non-linear waves. Applicability of PIV at large scale as well as to flows with large velocity gradients is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. a
Fig. 4. a
Fig. 5. a
Fig. 6a–c.
Fig. 7a–c.
Fig. 8.
Fig. 9A–F.
Fig. 10A–F.
Fig. 11A–F.

Similar content being viewed by others

Abbreviations

a :

wave amplitude (L)

c :

wave celerity (LT−1)

d diff :

diffraction limited minimum particle image diameter (L)

d e :

diffracted particle image diameter (L)

d g :

granulate grain diameter (L)

d p :

seeding particle diameter (L)

d τ :

recorded particle image diameter (L)

f :

focal length (L)

f # :

f number (-)

F :

slide Froude number (-)

g :

gravitational acceleration (LT−2)

h :

still-water depth (L)

H :

wave height (L)

l s :

slide length (L)

L :

wavelength (L)

M :

magnification (-)

m s :

slide mass (M)

n :

refractive index (-)

n por :

slide porosity (-)

N iw :

number of seeding particles in an interrogation window (-)

N pair :

number of detected particle image pairs in window (-)

p :

interrogation window size p×p pixels; 1 pixel=9 μm (L)

P :

probability (-)

P il :

probability of in-plane loss of particle (-)

P ol :

probability of out-of-plane loss of particle (-)

s :

slide thickness (L)

S :

relative slide thickness (-)

t :

time after impact (T)

T :

wave period (T)

v :

velocity (LT−1)

v p :

particle velocity (LT−1)

v px :

streamwise horizontal component of particle velocity (LT−1)

v py :

crosswise horizontal component of particle velocity (LT−1)

v pz :

vertical component of particle velocity (LT−1)

v s :

slide centroid velocity at impact (LT−1)

V :

dimensionless slide volume (-)

V iw :

interrogation volume (L3)

V s :

slide volume (L3)

x :

streamwise coordinate (L)

x ip :

area of view x dimension in image plane (L)

z :

vertical coordinate (L)

α :

slide impact angle (°)

δ :

bed friction angle (°)

δy :

depth of field (L)

Δt :

laser pulse separation (T)

Δx :

mean particle image x displacement in interrogation window (L)

ε Δx :

random displacement Δx error (L)

ε v :

random velocity v error (LT−1)

ε tot :

total random velocity v error (LT−1)

ε bias :

velocity v error due to biased correlation analysis (LT−1)

ε optics :

velocity v error due to optical imaging errors (LT−1)

ε track :

velocity v error due to particle flow tracking error (LT−1)

ε xx :

streamwise horizontal elongational strain component (1/T)

ε xz :

shear strain component (1/T)

ε zx :

shear strain component (1/T)

ε zz :

vertical elongational strain component (1/T)

η :

water surface displacement (L)

λ :

wavelength (L)

μ :

dynamic viscosity (ML−1T−1)

ρ :

density (ML−3)

ρ g :

granulate density (ML−3)

ρ p :

particle density (ML−3)

ρ s :

mean slide density (ML−3)

ρ w :

water density (ML−3)

ϕ′:

granulate internal friction angle (°)

ω y :

vorticity vector component (out-of-plane) (1/T)

References

  • Adrian RJ, Yao C-S (1985) Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl Optics 24:44–52

    CAS  Google Scholar 

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ (1995) Limiting resolution of particle image velocimetry for turbulent flow. In: Proceedings of the 2nd Turbulence Research Association Conference—I. Pohang Institute of Technology, Pohang,Korea, 1–19

  • Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8:1393–1398

    CAS  Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles, 3rd edn. Wiley, New York

  • De Quervain F (1980) Tabellen zum Mineral- und Gesteinsbestimmen, 3rd edn. Verlag der Fachvereine VdI, Zürich

  • Favre H (1935) Étude théorique et expérimentale des ondes de translation dans les canaux découverts. Dunod, Paris

  • Fincham AM, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29:S13–S22.

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Haz 19:3–22

    CAS  Google Scholar 

  • Fritz HM (2002a) PIV applied to landslide generated impulse waves. In: Adrian RJ et al. (eds) Laser techniques for fluid mechanics. Springer, New York Berlin Heidelberg, 305–320

  • Fritz HM (2002b) Initial phase of landslide generated impulse waves. Dissertation, ETH No 14'871, Swiss Federal Institute of Technolgy, Zürich

  • Fritz HM, Moser P (2003) Pneumatic landslide generator. Int J Fluid Power 4:49–57

    Google Scholar 

  • Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. U.S. Geological Survey Open-File Report 96–677

  • Goodman JW (1996) An introduction to Fourier optics. McGraw-Hill, New York

  • Gray C, Greated CA (1988) The application of particle image velocimetry to the study of water waves. Optics Lasers Eng 9:265–276

    Article  Google Scholar 

  • Gray C, Greated CA, McCluskey DR, Easson WJ (1991) An analysis of the scanning beam PIV illumination system. Meas Sci Technol 2:717–724

    Article  Google Scholar 

  • Hart DP (1998) Super-resolution PIV by recursive local correlation. In: Proceedings of the International Conference on Optical technology and image processing in fluid, thermal and combustion flow, Yokohama, Japan, 6–10 December 1998.VSJ–SPIE98, AB149:1–10

  • Hecht E (1998) Optics, 3rd edn. Addison-Wesley, Reading, Mass.

  • Hecht J (1992) The laser guidebook, 2nd edn. McGraw-Hill, New York

  • Hering F, Leue C, Wierzimok D, Jähne B (1997) Particle tracking velocimetry beneath water waves. Part 1: visualization and tracking algorithms. Exp Fluids 23:472–482

    Article  Google Scholar 

  • Hinze JO (1975) Turbulence, 2nd edn. McGraw-Hill, New York

  • Hjelmfelt AT, Jr, Mockros LF (1966) Motion of discrete particles in a turbulent fluid. Appl Sci Res 16:149–161

    CAS  Google Scholar 

  • Holst GC (1998) CCD arrays, cameras and displays. SPIE Optical Engineering Press, Bellingham, Wa.

  • Huang HT, Fielder HF, Wang JJ (1993a) Limitation and improvement of PIV. Part I: limitation of conventional techniques due to deformation of particle image patterns. Exp Fluids 15:168–174

    CAS  Google Scholar 

  • Huang HT, Fielder HF, Wang JJ (1993b) Limitation and improvement of PIV. Part II: particle image distortion, a novel technique. Exp Fluids 15:263–273

    CAS  Google Scholar 

  • Huang HT, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:1427–1440

    Article  CAS  Google Scholar 

  • Huber A (1980) Schwallwellen in Seen als Folge von Bergstürzen. In: Vischer D (ed) VAW-Mitteilung 47. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

  • Jähne B (1997) Digital image processing—concepts, algorithms, and scientific applications, 4th edn. Springer-Verlag, Berlin Heidelberg New York

  • Jensen A, Sveen JK, Grue J, Richon J-B, Gray C (2001) Accelerations in water waves by extended particle image velocimetry. Exp Fluids 30:500–510

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. Part 1: Double pulsed systems. Meas Sci Technol 1:1202–1215

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Google Scholar 

  • Kerker M (1969) The scattering of light. Academic Press, New York

  • Kündig R, Mumenthaler T, Eckardt P, Keusen HR, Schindler C, Hofmann F, Vogler R, Guntli P (1997) Die mineralischen Rohstoffe der Schweiz. Schweizerische Geotechnische Kommission, Zürich

  • Landreth CC, Adrian RJ (1990) Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp. Fluids 9:74–84

    CAS  Google Scholar 

  • Lauber G (1997) Experimente zur Talsperrenbruchwelle im glatten geneigten Rechteckkanal. In: Vischer D (ed) VAW-Mitteilung 152. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

  • LeMéhauté B, Khangoankar T (1992) Generation and propagation of explosion generated waves in shallow water. Technical Report DNA-TR-92-40, Nuclear Defense Agency, Washington D.C.

  • Lin P, Chang K-A, Liu PL-F (1999) Runup and rundown of solitary waves on sloping beaches. J Waterway Port Coastal Ocean Eng ASCE 125:247–255

    Article  Google Scholar 

  • Lindken R, Merzkirch W (2000) Velocity measurements of liquid and gaseous phase for a system of bubbles rising in water. Exp Fluids 29:S194-S201

    CAS  Google Scholar 

  • Liu A, Shen X, Smith GH, Grant I (1992) Particle image velocimetry measurements of wave–current interaction in a laboratory flume. Optics Lasers Eng 16:239–264

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    CAS  Google Scholar 

  • Müller D (1995) Auflaufen und Überschwappen von Impulswellen an Talsperren. In: Vischer D (ed) VAW-Mitteilung 137. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

  • Nogueira J, Lecuona A, Rodríguez PA (1997) Data validation, false vectors correction and derived magnitudes calculation on PIV data. Meas Sci Technol 8:1493–1501

    Article  CAS  Google Scholar 

  • Prasad AK, Adrian RJ, Landreth CC, Offutt PW (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116

    CAS  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry—a practical guide. Springer, Berlin Heidelberg New York

  • Roth GI, Mascenik DT, Katz J (1999) Measurements of the flow structure and turbulence within a ship bow wave. Phys Fluids 11:3512–3523

    CAS  Google Scholar 

  • Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26:513–523

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:S51–S60

    Article  Google Scholar 

  • Savage SB (1979) Gravity flow of cohesionless granular materials in chutes and channels. J Fluid Mech 92:53–96

    Google Scholar 

  • Shifrin KS (1988) Physical optics of ocean water. AIP translation series. American Institute of Physics, New York

  • Skyner D (1996) A comparison of numerical predictions and experimental measurements of the internal kinematics of a deep-water plunging wave. J Fluid Mech 315:51–64

    Google Scholar 

  • Slingerland RL, Voight B (1979) Occurrences, properties and predictive models of landslide-generated impulse waves. Rockslides and avalanches—2. In: Voight B (ed) Developments in geotechnical engineering, vol 14B. Elsevier, Amsterdam, 317-397

  • Son SY, Kihm KD (2001) Evaluation of transient turbulent flow fields using digital cinematographic particle image velocimetry. Exp. Fluids 30:537–550

    Article  Google Scholar 

  • Stoker JJ (1957) Water waves. Interscience, New York

  • Tognacca C (1999) Beitrag zur Untersuchung der Entstehungsmechanismen von Murgängen. In: Minor H-E (ed) VAW-Mitteilung 164. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

  • van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

  • Varnes DJ (1978) Slope movements types and processes. In: Shuster RL, Krizek RJ (eds) Landslides analysis and control. Transportation Research Board Special Report 176:11–33

    Google Scholar 

  • Vischer DL, Hager WH (1998) Dam hydraulics. Wiley, Chichester

  • Wernet M, Pline A (1993) Particle displacement tracking technique and Cramer–Rao lower bound error in centroid estimates from CCD imagery. Exp Fluids 15:295–307

    CAS  Google Scholar 

  • Westerweel J (1993) Digital particle image velocimetry: theory and application. Delft University Press, Delft

    Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247

    Google Scholar 

  • Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp Fluids 231:20–28

    Article  Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S3–S12

    Article  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Google Scholar 

Download references

Acknowledgements

The research work presented was supported by the Swiss National Science Foundation, grant number 2100-050586.97. The whole PIV system was generously funded by an extraordinary credit issued by the Swiss Federal Institute of Technology (ETH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Fritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, H.M., Hager, W.H. & Minor, HE. Landslide generated impulse waves. . Exp Fluids 35, 505–519 (2003). https://doi.org/10.1007/s00348-003-0659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0659-0

Keywords

Navigation