Skip to main content
Log in

A Potential Strain Indicator for Brittle Failure Prediction of Low-porosity Rock: Part I—Experimental Studies Based on the Uniaxial Compression Test

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the quantitative relationship between the axial strain threshold at the volumetric strain reversal point (ε 1cd) and the strain threshold at the peak stress (ε 1ucs) during the uniaxial compression tests. We found that normalized values of ε 1ucs/ε 1cd for different rock types are typically ~1.34(±0.24). This is especially true for igneous and metamorphic rocks, or low-porosity sedimentary rocks. To verify this finding, we investigated seven granitic gneiss samples using the uniaxial compression test. Our results were consistent with the above statistics. We inferred that ε 1ucs/ε 1cd may be an intrinsic property of low-porosity rocks, and may be a potential indicator for predicting failure strains in laboratory-scale rock samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allegre C, Le Mouel J, Provost A (1982) Scaling rules in rock fracture and possible implications for earthquake prediction. Nature 297:47–49

    Article  Google Scholar 

  • Andersson JC, Martin CD, Stille H (2009) The Äspö Pillar stability experiment: part II—rock mass response to coupled excavation-induced and thermal-induced stresses. Int J Rock Mech Min Sci 46(5):879–895

    Article  Google Scholar 

  • Bieniawski ZT (1967a) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci 4(4):395–406

    Article  Google Scholar 

  • Bieniawski ZT (1967b) Mechanism of brittle fracture of rock: part II—experimental studies. Int J Rock Mech Min Sci 4(4):407–423

    Article  Google Scholar 

  • Brace WF, Paulding BW, Scholz CH (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3953

    Article  Google Scholar 

  • Cai M, Kaiser P, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41(5):833–847

    Article  Google Scholar 

  • Carpinteri A, Chiaia B, Invernizzi S (2002) Applications of fractal geometry and renormalization group to the Italian seismic activity. Chaos Soliton Fract 14(6):917–928

    Article  Google Scholar 

  • Chen YF, Li DQ, Jiang QH, Zhou CB (2012) Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks. Int J Rock Mech Min Sci 50:102–116

    Article  Google Scholar 

  • Cornelius R, Voight B (1989) Determination of eruption-prediction constants for accelerated creep or seismicity. Geol Soc Amer Abst Progr 21:13

    Google Scholar 

  • Cristescu ND (2002) New trends in rock mechanics. Int Appl Mech 38(1):1–22

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B (1999) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380

    Article  Google Scholar 

  • Farahmand A, AghaKouchak A (2013) A satellite-based global landslide model. Nat Hazard Earth Sys 13(5):1259–1267

    Article  Google Scholar 

  • Federico A, Popescu M, Elia G, Fidelibus C, Internò G, Murianni A (2012) Prediction of time to slope failure: a general framework. Environ Earth Sci 66(1):245–256

    Article  Google Scholar 

  • He MC, Wang CG, Feng JL, Li DJ, Zhang GY (2010) Experimental investigations on gas desorption and transport in stressed coal under isothermal conditions. Int J Coal Geol 83(4):377–386

    Article  Google Scholar 

  • Heap MJ, Vinciguerra S, Meredith PG (2009) The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 471(1):153–160

    Article  Google Scholar 

  • Hidalgo KP, Nordlund E (2013) Comparison between stress and strain quantities of the failure-deformation process of fennoscandian hard rocks using geological information. Rock Mech Rock Eng 46(1):41–51

    Article  Google Scholar 

  • Hu DW, Zhou H, Zhang F, Shao JF (2010) Evolution of poroelastic properties and permeability in damaged sandstone. Int J Rock Mech Min Sci 47(6):962–973

    Article  Google Scholar 

  • Jf Wang (2004) Theoretical analysis to two classic landslide prediction models: saito’s model and voight’s model. J Geomech 1:40–50

    Google Scholar 

  • Jiang YD, Xian XF, Xiong DG, Zhou FC (2005) Study on creep behaviour of sandstone and its mechanical models. Chin J Geotech Eng 27(12):1478–1481 (in Chinese)

    Google Scholar 

  • Jiang T, Shao JF, Xu WY, Zhou CB (2010) Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks. Int J Rock Mech Min Sci 47(5):703–713

    Article  Google Scholar 

  • Kannan S (2014) Innovative Mathematical Model for Earthquake Prediction. Eng Fail Analysis 41:89–95

    Article  Google Scholar 

  • Klein E, Reuschlé T (2004) A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. Int J Rock Mech Min Sci 41(6):975–986

    Article  Google Scholar 

  • Li S, Lajtai EZ (1998) Modeling the stress–strain diagram for brittle rock loaded in compression. Mech Mater 30(3):243–251

    Article  Google Scholar 

  • Li HB, Zhao J, Li TJ (2000) Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Min Sci 37(6):923–935

    Article  Google Scholar 

  • Liang CY, Li X, Wang SX, Li SD, He JM, Ma CF (2012) Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression. Chin J Geotech Eng 31(9):1830–1838 (in Chinese)

    Google Scholar 

  • Liu Z, Shao J, Xu W, Chen H, Shi C (2013) Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides. doi:10.1007/s10346-013-0443-z

    Google Scholar 

  • Martin CD (1993) The strength of massive Lac du Bonnet granite around underground openings. Ph.D Thesis, Department of Civil and Geological Engineering, University of Manitoba, Winnipeg

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31(6):643–659

    Article  Google Scholar 

  • Martin CD, Christiansson R (2009) Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min Sci 46(2):219–228

    Article  Google Scholar 

  • Marzocchi W, Zechar JD (2011) Earthquake forecasting and earthquake prediction: different approaches for obtaining the best model. Seismol Res Lett 82(3):442–448

    Article  Google Scholar 

  • Nicksiar M, Martin CD (2012) Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech Rock Eng 45(4):607–617

    Article  Google Scholar 

  • Nie L, Su ZD, Li ZC, Zhang M, Zhang H (2013) Logarithmic landslide forecasting mmodel based on the theory of slope creep. Int J Landslide Environ 1(1):89–90

    Google Scholar 

  • Papazachos B, Karakaisis G, Scordilis E, Papazachos C, Panagiotopoulos D (2010) Present patterns of decelerating–accelerating seismic strain in South Japan. J Seismolog 14(2):273–288

    Article  Google Scholar 

  • Pellet FL, Keshavarz M, Hosseini KA (2011) Mechanical damage of a crystalline rock having experienced ultra high deviatoric stress up to 1.7 GPa. Int J Rock Mech Min Sci 48(8):1364–1368

    Article  Google Scholar 

  • Qin SQ, Xu XW, Hu P, Wang YY, Huang X, Pan XH (2010a) Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction. Chin J Geophys 53(4):611–626

    Article  Google Scholar 

  • Qin SQ, Xue L, Wang YY, Huang X, Pan XH (2010b) Further verifications on the brittle failure theory of multiple locked patches along a seismogenic fault systemand discussions on some science issues. Prog Geophys 25(3):749–758 (in Chinese)

    Google Scholar 

  • Qin SQ, Xue L, LI P, Li GL (2014) Review of the prospective prediction of the 2014 Yutian Ms.73 earthquake in Xinjiang and analysis of its Postseismic trend. Chin J Geophys 57(1):127–132

    Article  Google Scholar 

  • Smalley RF, Turcotte DL, Solla SA (1985) A renormalization group approach to the stick-slip behavior of faults. J Geophys Res 90(B2):1894–1900

    Article  Google Scholar 

  • Sornette D, Helmstetter A, Andersen JV, Gluzman S, Grasso JR, Pisarenko V (2004) Towards landslide predictions: two case studies. Phys A 338(3–4):605–632

    Article  Google Scholar 

  • Varnes DJ (1989) Predicting earthquakes by analyzing accelerating precursory seismic activity. Pure appl Geophys 130(4):661–686

    Article  Google Scholar 

  • Xie SY, Shao JF, Xu WY (2011) Influences of chemical degradation on mechanical behaviour of a limestone. Int J Rock Mech Min Sci 48(5):741–747

    Article  Google Scholar 

  • Xu NC, Yang XY, Qin J (2012) Relationship between rock’s bulk strain and long-term strength under uniaxial compression. J Liaoning Tech Univ 31(3):358–361 (in Chinese)

    Google Scholar 

  • Xue L (2014) A potential stress indicator for failure prediction of laboratory-scale rock samples. Arab J Geosci. doi:10.1007/s12517-014-1456-1

  • Xue L, Sun Q, Wang YY, Wang SW, Li GL, Pan XH (2013) Study on the critical stress state of brittle failure of rock based on renormalization group theory. J Basic Sci Eng 21(4):710–724 (in Chinese)

    Google Scholar 

  • Xue L, Qin SQ, Sun Q, Wang YY, Lee LM, Li WC (2014a) A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech Rock Eng 47(4):1183–1195

    Article  Google Scholar 

  • Xue L, Qin SQ, Sun Q, Wang YY, Qian HT (2014b) A quantitative criterion to describe the deformation process of rock sample subjected to uniaxial compression: from criticality to final failure. Physica A 410:470–482

    Article  Google Scholar 

  • Yin XC, Chen XZ, Song ZP, Yin C (1995) A new approach to earthquake prediction: The Load/Unload Response Ratio (LURR) theory. Pure appl Geophys 145(3–4):701–715

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project funded by China Postdoctoral Science Foundation (Nos. 2014T70121 and 2012M520376), the National Natural Science Foundation of China (Nos. 41302233 and 41030750), and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB10030302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Qi, M., Qin, S. et al. A Potential Strain Indicator for Brittle Failure Prediction of Low-porosity Rock: Part I—Experimental Studies Based on the Uniaxial Compression Test. Rock Mech Rock Eng 48, 1763–1772 (2015). https://doi.org/10.1007/s00603-014-0675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0675-9

Keywords

Navigation