Skip to main content
Log in

Experimental Hydromechanical Characterization and Numerical Modelling of a Fractured and Porous Sandstone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The experimental device previously used to study the hydromechanical behaviour of individual fractures on a laboratory scale, was adapted to make it possible to measure flow through porous rock mass samples in addition to fracture flows. A first series of tests was performed to characterize the hydromechanical behaviour of the fracture individually as well as the porous matrix (sandstone) comprising the fracture walls. A third test in this series was used to validate the experimental approach. These tests showed non-linear evolution of the contact area on the fracture walls with respect to effective normal stress. Consequently, a non-linear relationship was noted between the hydraulic aperture on the one hand, and the effective normal stress and mechanical opening on the other hand. The results of the three tests were then analysed by numerical modelling. The VIPLEF/HYDREF numerical codes used take into account the dual-porosity of the sample (fracture + rock matrix) and can be used to reproduce hydromechanical loading accurately. The analyses show that the relationship between the hydraulic aperture of the fracture and the mechanical closure has a significant effect on fracture flow rate predictions. By taking simultaneous measurements of flow in both fracture and rock matrix, we were able to carry out a global evaluation of the conceptual approach used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Armand G (2000) Contribution à la caractérisation en laboratoire et à la modélisation constitutive du comportement mécanique des joints rocheux. Thèse de Doctorat de l’Université Joseph Fourier, Grenoble (in French)

  • Aydin A (2001) Fracture void structure: implications for flow, transport and deformation. Environ Geol 40(6):672–677

    Article  Google Scholar 

  • Bai M, Elsworth D, Roegiers JC (1993) Multiporosity/multipermeability approach to the simulation of naturally-fractured reservoirs. Water Resour Res 29:1621–1633

    Article  Google Scholar 

  • Bai M, Abousleiman Y, Cui L, Zhang J (1999) Dual-porosity porous elastic modeling of generalized plane strain. Int J Rock Mech Min Sci 36:1087–1094

    Article  Google Scholar 

  • Bandis SC, Lumsden AC, Barton N (1983) Mechanical properties of rock joints. Int J Rock Mech Min Sci Geomech Abstr 20:249–263

    Article  Google Scholar 

  • Bandis SC, Makurat A, Vik G (1985) Predicted and measured hydraulic conductivity of rock joints. In: Stephansson O (ed) Proceedings of the international symposium on fundamentals of rock joints, Bjorkliden, pp 269–80

  • Barrenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech 24:1286–1303

    Article  Google Scholar 

  • Bart M, Shao JF, Lydzba D, Haji-Sotoudeh M (2004) Coupled hydromechanical modeling of rockfractures under normal stress. Can Geotech J 41:686–697

    Article  Google Scholar 

  • Barton N, Bandis SC, Bakhtar K (1985) Strength, deformation, conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(2):121–140

    Article  Google Scholar 

  • Belem T, Souley M, Homand F (2009) Method for quantification of wear of sheared joint walls based on surface morphology. Rock Mech Rock Eng 42:883–910

    Article  Google Scholar 

  • Billaux D, Gentier S (1990) Numerical and laboratory studies of flow in a fracture. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 369–373

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  • Boulon MJ, Selvadurai APS, Benjelloun H, Feuga B (1993) Influence of rock joint degradation on hydraulic conductivity. Int J Rock Mech Min Sci Geomech Abstr 30(7):1311–1317

    Article  Google Scholar 

  • Brace WF (1978) Note on permeability changes in geologic material due to stress. Pure Appl Geophys 116:627–633

    Article  Google Scholar 

  • Bruel D, Cacas MC, Ledoux E, de Marsily G (1994) Modelling storage behaviour in a fractured rock mass. J Hydrol 162:267–278

    Article  Google Scholar 

  • Cammarata G, Fidelibus C, Cravero M, Barla G (2007) The hydromechanically coupled response of rock fractures. Rock Mech Rock Eng 40(1):41–61

    Article  Google Scholar 

  • Capasso G, Gentier S, Scavia C, Pellegrino A (2000) Coupled hydromechanical behavior of a rock fracture. In: Proceedings of the EUROCK symposium, Aachen, pp 305–310

  • Elliot GM, Brown ET, Boodt PI, Hudson JA (1985) Hydrochemical behaviour of joints in the Carmenelis granite, SW England. In: Stephansson O (ed) Proceedings of the international symposium on fundamentals of rock joints, Bjorkliden, pp 249–258

  • Esaki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a shearflow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Min Sci Geomech Abstr 36:641–650

    Article  Google Scholar 

  • Fardin N, Stephenson O, Jing L (2001) The scale dependence of rock joint surface roughness. Int J Rock Mech Min Sci Geomech 38(5):659–669

  • Gale JE (1982) The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships. In: Proceedings of the 23rd US symposium on rock mechanics, Berkeley, California, pp 290–298

  • Gale JE (1987) Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties. In: Proceedings of the 28th US symposium on rock mechanics, Tucson, pp 1213–1222

  • Gale JE (1990) Hydraulic behaviour of rock joints. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 351–362

    Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Min Sci Geomech Abstr 15:249–257

    Article  Google Scholar 

  • Gentier S, Hopkins D (1997) Mapping fracture aperture as a function of normal stress using a combination of casting, image analysis and modeling techniques. Int J Rock Mech Min Sci Geomech Abstr 34(3/4): paper no 132

  • Gentier S, Wojtkowiak F (1987) Laboratoire souterrain dans le granite de Tenelles, mine de Fanay (Haute-Vienne). Expérience thermo-hydro-mécanique (THM). In: Étude expérimentale en laboratoire de la morphologie de surface et du comportement mécanique sous contrainte normale de cinq fractures naturelles. Rapport BRGM-CEA 87 SGN 541 ST (in French)

  • Gentier S, Billaux D, Van Vliet L (1989) Laboratory testing of the voids of a fracture. Rock Mech Rock Eng 22:149-157

  • Gentier S, Petitjean C, Riss J, Archambault G (1996) Hydromechanical behaviour of a natural joint under shearing. In: Aubertin M, Hassani F, Mitri H (eds) Proceedings of the 2nd NARMS, Balkema, Montreal, pp 1201–1208

  • Gentier S, Lamontagne E, Archambault G, Riss J (1997) Anisotropy of flow in a fracture undergoing shear and its relationship to the direction of shearing and injection pressure. Int J Rock Mech Min Sci 34(1997):412

    Article  Google Scholar 

  • Haimson BC, Doe TW (1983) State of stress, permeability and fractures in the Precambrian granite of Northern Illinois. J Geophys Res 88:7355–7371

    Article  Google Scholar 

  • Hakami E (1995) Aperture distribution of rock fractures. Doctoral thesis, Royal institute of technology, Stockholm

  • Hakami E, Barton N (1990) Aperture measurements and flow experiments using transparent replicas of rock joints. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 383–390

    Google Scholar 

  • Hakami E, Larsson E (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech Min Sci 33:395–404

    Article  Google Scholar 

  • Hans J, Boulon M (2003) A new device for investigating the hydro-mechanical properties of rock joints. Int J Numer Anal Method Geomech 27:513–548

    Article  Google Scholar 

  • Hopkins DL (2000) The implications of joint deformation in analysing the properties and behaviour of fractured rock masses, underground excavations and faults. Int J Rock Mech Min Sci 37:175–202

    Article  Google Scholar 

  • Indraratna B, Ranjith PG, Gale W (1999) Single phase water flow through rock fractures. Geotech Geol Eng 17:211–240

    Article  Google Scholar 

  • Iwai K (1976) Fundamental studies of fluid flow through single fracture. PhD Thesis, University of California, Berkeley

  • Jing L, Stephansson O (2007) Fundamentals of discrete element methods for rock engineering: theory and applications. In: Jing L, Stephansson O (eds) Developments in geotechnical engineering, vol 85. Elsevier, London, p 545

  • Jing L, Tsang C-F, Stephansson O (1995) DEOCOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int J Rock Mech Min Sci Geomech Abstr 32(5):389–398

  • Karami MH (1998) Etude expérimentale du comportement poromécanique d’une roche endommageable. Thèse de Doctorat de l’Université des sciences et technologies de Lille (in French)

  • Kfoury M (2004) Changement d’échelle séquentiel pour des milieux fracturés hétérogènes. PhD thesis (in French), INPT Toulouse, p 150

  • Koyama T, Li B, Jiang Y, Jing L (2009) Numerical modelling of fluid flow tests in a rock fracture with a special algorithm for contact areas. Comput Geotech 36:291–303

    Article  Google Scholar 

  • Kranz RL, Frankel AD, Engelder T, Scholz CH (1979) The permeability of whole and jointed barre granite. Int J Rock Mech Min Sci Geomech Abstr 16:225–234

    Article  Google Scholar 

  • Kulatilake PHSW, Park J, Balasingam P, Morgan R (2008) Quantification of aperture and relations between aperture, normal stress and fluid flow for natural single rock fractures. Geotech Geol Eng 26:269–281

    Article  Google Scholar 

  • Lee HS, Cho TF (2002) Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mech Rock Eng 35(4):299–318

    Article  Google Scholar 

  • Li B, Jiang Y, Koyama T, Jing L, Tanabashi Y (2008) Experimental study on hydro-mechanical behaviour of rock joints by using parallel-plates model containing contact area and artificial fractures. Int J Rock Mech Min Sci 45(3):362–375

    Article  Google Scholar 

  • Lomize GM (1951) Flow in fractured rocks. Gosenergoisdat, Moscow

    Google Scholar 

  • Lopez P, Thoraval A, Rahmani I, Buzzi O, Boulon M (2008) Advance in constitutive modelling of jointed rock hydromechanical interaction at laboratory scale. Stud Geotech Mech XXX(1–2):221–233

  • Louis C (1971) A study of groundwater flow in jointed rock and its influence on the stability of rock masses. In: Rock mechanics research report 10, Imperial College

  • Makurat A, Barton N, Rad NS, Bandis SC (1990) Joint conductivity due to normal and shear deformation. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 535–540

    Google Scholar 

  • Matsuki KY, Chida YK, Sakaguchi K, Glover PWJ (2006) Size effect on aperture and permeability of a fracture as estimated in large synthetic fractures. Int J Rock Mech Min Sci 43(5):726–755

  • Ngai L, Wong NY, Li D, Liu G (2013) Experimental studies on permeability of intact and singly jointed meta-sedimentary rocks under confining pressure. Rock Mech Rock Eng 46:107–121

    Article  Google Scholar 

  • Nguyen TS, Selvadurai APS (1998) A model for coupled mechanical and hydraulic behavior of a rock joint. Int J Numer Anal Meth Geomech 22:29–48

    Article  Google Scholar 

  • Ohnishi Y, Chan T, Jing L (1996) Constitutive models for rock joints. In: Stephansson O, Jing L, Tsang C-F (eds) Coupled thermo-hydromechanical processes of fractured media. Dev Geotech Eng 79:57–92

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38(3):317–329

    Article  Google Scholar 

  • Olsson WA, Brown SR (1993) Hydromechanical response of a fracture undergoing compression and shear. Int J Rock Mech Min Sci Geomech Abstr 30(7):845–851

  • Patir N, Cheng HS (1978) An average flow model for determining effects of three-dimensional roughness on hydrodynamic lubrication. J Lubr Technol (ASME) 100:12–17

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Myer LR, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural joints in low permeability rock. In: Proceedings of the 6th international congress on rock mechanics, Montreal, pp 225–231

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of the stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22:251–261

    Article  Google Scholar 

  • Royer P, Auriault JL, Boutin C (1996) Macroscopic modeling of double-porosity reservoirs. J. Petrol Sci Eng 16:187–202

    Article  Google Scholar 

  • Selvadurai APS, Nguyen TS (1999) Mechanics and fluid transport in a degradable discontinuity. Eng Geol 53:243–249

    Article  Google Scholar 

  • Selvadurai APS, Yu Q (2005) Mechanics of a discontinuity in a geomaterial. Comput Geotech 32:92–106

    Article  Google Scholar 

  • Sharifzadeh M, Mitani Y, Esaki T (2008) Rock joint surfaces measurement and analysis of aperture distribution under different normal and shear loading using GIS. Rock Mech Rock Eng 41(2):299–323

    Article  Google Scholar 

  • Souley M, Homand F, Amadei B (1995) An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths. Int J Rock Mech Min Sci Geomech Abstr 32(2):101–109

  • Souley M, Boulon M, Rahmani I, Thoraval A (2007) Laboratory measurements of hydraulic exchanges and associated hydromechanical couplings between fracture and rock mass in the case of a sandstone. In: Sousa LR, Olalla C, Grossmann NF (eds) Proceedings of the 11th ISRM for rock mechanics, vol 1, Lisbon, Portugal, pp 327–330

  • Teufel LW (1987) Permeability changes during shear deformation of fractured rock. In: Proceedings of the 28th US symposium on rock mechanics, Tucson, pp 473–80

  • Thompson ME, Brown SR (1991) The effect of anisotropic surface roughness on flow and transport in fractures. J Geophys Res 21923–21932

  • Tijani SM (1996) Short description of VIPLEF code. Coupled thermo- hydro-mechanical processes of fractured media. Dev Geotech Eng (Amsterdam, Elsevier Science) 79:507–511

    Google Scholar 

  • Tsang C-F (1991) Coupled thermo-mechanical hydro-chemical processes in rock fractures. Rev Geophys 29:537–551

    Article  Google Scholar 

  • Tsang YW, Tsang C-F (1990) Hydrological characterization of variable-aperture fractures. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 423–431

    Google Scholar 

  • Tsang YW, Witherspoon PA (1981) Hydromechanical behaviour of a deformable rock fracture subject to normal stress. J Geophys Res 86(10):9287–9298

    Article  Google Scholar 

  • Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci Geomech Abstr 18:429–435

    Article  Google Scholar 

  • Walsh R, McDermott C, Kolditz O (2008) Numerical modeling of stress–permeability coupling in rough fractures. Hydrogeol J 16:613–627

    Article  Google Scholar 

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 245–255

  • Witherspoon PA, Amick CH, Gale JE, Iwai K (1979) Observations of a potential size effect in experimental determination of the hydraulic properties of fractures. Water Resour Res 15(5):1142–1146

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Xie HP, Wang JA, Xie WH (1997) Fractal effects of surface roughness on the mechanical behavior of rock joints. Chaos Solut Fractals 8:221–252

    Article  Google Scholar 

  • Yeo IW, De Freitas MH, Zimmerman RW (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci Geomech Abstr 35(8):1051–1070

  • Zhang Z, Nemcik J (2013) Friction factor of water flow through rough rock fractures. Rock Mech Rock Eng

  • Zhang J, Roegiers J-C (2005) Double porosity finite element method for borehole modeling. Rock Mech Rock Eng 38(3):217–242

    Article  Google Scholar 

  • Zhang J, Bai M, Roegiers J-C (2003) Dual-porosity poroelastic analyses of wellbore stability. Int J Rock Mech Min Sci 40:473–483

    Article  Google Scholar 

  • Zhang J, Standifird WB, Roegiers J-C, Zhang Y (2007) Stress-dependent fluid flow and permeability in fractured fedia: from lab experiments to engineering applications. Rock Mech Rock Eng 40(1):3–21

    Article  Google Scholar 

  • Zhao J (1992) Measurements of coupled normal deformation, permeability, and heat transfer in rock joints using a triaxial test facility. Geotech Test J 15(4):323–329

    Article  Google Scholar 

  • Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the Carnmenellis granite. Quat J Eng Geol 25:279–290

    Article  Google Scholar 

  • Zhou CB, Sharma RS, Chen YF, Rong G (2008) Flow–stress coupled permeability tensor for fractured rock masses. Int J Numer Anal Method Geomech 32:1289–1309

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30

    Article  Google Scholar 

  • Zou L, Tarasov BG, Dyskin AV, Adhikary DP, Pasternak E, Xu W (2013) Physical modelling of stress-dependent permeability in fractured rocks. Rock Mech Rock Eng 46:67–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mountaka Souley.

Appendix

Appendix

\(C_{ijkl}^{m}\) :

Drained compliance tensor (inverse of drained elastic constant tensor)

\({\text{d}}\sigma_{ij}^{\text{e}} ;{\text{ d}}\sigma_{ij}\) :

Increment of effective and total stress tensor, respectively

\({\text{d}}P\) :

Increment of pore pressure

b :

Biot’s coefficient (rock matrix)

\({\text{d}}\varepsilon_{ij}^{\text{p}}\) :

Increment of non-elastic strain (plastic, viscoplastic …)

K 0 :

Drained compressibility modulus (matrix)

du n, du s :

Increments of relative normal (closure is negative) and shear displacements, respectively

k ni, V m :

Initial normal stiffness and maximum fracture closure (>0), respectively

dτ :

Increment of shear stress

k s :

Shear stiffness

\({\text{d}}\sigma_{\text{n}}^{\text{e}} ;{\text{ d}}\sigma_{\text{n}}\) :

Increment of effective and total normal stress, respectively (positive in compression)

b j :

Biot’s coefficient (fracture)

c j , ϕ j :

Fracture cohesion and friction angle

S :

Storage coefficient expressed as:

$$S = \left( {\frac{1}{M} + \frac{{b^{2} }}{{K_{0} }}} \right)\rho_{{f_{0} }} g$$
M :

Biot’s modulus (rock matrix)

g :

Gravity acceleration

k ij :

Solid matrix permeability tensor

h :

Total hydraulic head

q v, \(q_{v}^{f}\) :

Source terms in porous medium and fracture, respectively

\(\rho_{{f_{0} }}\) , μ 0 :

Initial fluid density and dynamic viscosity

K f :

Fluid compressibility modulus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souley, M., Lopez, P., Boulon, M. et al. Experimental Hydromechanical Characterization and Numerical Modelling of a Fractured and Porous Sandstone. Rock Mech Rock Eng 48, 1143–1161 (2015). https://doi.org/10.1007/s00603-014-0626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0626-5

Keywords

Navigation