Skip to main content
Log in

Modelling Discharge Rates and Ground Settlement Induced by Tunnel Excavation

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Interception of aquifers by tunnel excavation results in water inflow and leads to drawdown of the water table which may induce ground settlement. In this work, analytical and numerical models are presented which specifically address these groundwater related processes in tunnel excavation. These developed models are compared and their performance as predictive tools is evaluated. Firstly, the water inflow in deep tunnels is treated. It is shown that introducing a reduction factor accounting for the effect of effective stress on hydrodynamic parameters avoids overestimation. This effect can be considered in numerical models using effective stress-dependent parameters. Then, quantification of ground settlement is addressed by a transient analytical solution. These solutions are then successfully applied to the data obtained during the excavation of the La Praz exploratory tunnel in the Western Alps (France), validating their usefulness as predictive tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a (m):

Lateral spacing of the aquifer

b (1/m):

Coefficient characterising the elastic resistance of fractures to compression

C v (1/m):

Aquifer compressibility

d (m):

Distance between the tunnel and the surface via the aquifer

e (m):

Aquifer thickness

E s (Pa):

Aquifer elasticity

g (m/s2):

Gravitational acceleration

h (m):

Pressure head

h 0 (m):

Pressure head prior to excavation

H (m):

Hydraulic head

H 0 (m):

Hydraulic head prior to excavation

K (m/s):

Hydraulic conductivity

K 0 (m/s):

Hydraulic conductivity at no stress

K (m/s):

Hydraulic conductivity tensor

L (m):

Tunnel/sector length

n (−):

Coefficient of asperities length statistical distribution

n (−):

Unit vector normal to the fracture plane

n x n y n z (−):

Components of the unit normal vector

p (Pa):

Water pressure

Q (m3/s):

Volumetric discharge rate

Q 0 (m3/s):

Volumetric inflow rate without considering effective stress

Q red (m3/s):

Volumetric inflow rate considering effective stress

r (m):

Radial coordinate

r 0 (m):

Tunnel radius

s (m):

Water table drawdown

s 0 (m):

Drawdown at the tunnel

S s (1/m):

Specific storage coefficient

S sm (1/m):

Rock matrix specific storage coefficient

S sf (1/m):

Fracture specific storage coefficient

S sf 0 (1/m):

Fracture specific storage coefficient at no stress

t (s):

Time

T (m2/s):

Transmissivity

v (m/s):

Excavation speed

x (m):

Spatial coordinate

z (m):

Elevation head

Z (m):

Depth

α (−):

Reduction factor

α B (−):

Biot-Willis coefficient

\(\Updelta V_z\) (m):

Ground settlement

λ (−):

Ratio of horizontal to vertical stress

ν (−):

Poisson’s ratio

ρ w (kg/m3):

Water density

ρ r (kg/m3):

Rock mass density

ϕ 0 (−):

Porosity at no stress

σ (Pa):

Stress

σ h (Pa):

Horizontal stress

σ v (Pa):

Vertical stress

σ′ (Pa):

Effective stress

σ 0′ (Pa):

Fracture closure effective stress

References

  • Anagnostou G (1995) The influence of tunnel excavation on the hydraulic head. Int J Numer Anal Methods in Geomech 19(10):725–746

    Article  Google Scholar 

  • Bear J, Cheng AHD (2010) Modeling groundwater flow and contaminant transport. Springer, Berlin

  • Bonzanigo L (1999) Lo slittamento di Campo Vallemaggia. PhD thesis, Swiss Federal Institute of Technology Zürich

  • Bordet C (1971) L’eau dans les massifs rocheux fissurés. Observations dans les travaux souterrains. Tech rep, Université de Liége, BEL

  • Boutt D, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18(8):1839–1854

    Article  Google Scholar 

  • Cappa F (2006) Role of fluids in the hydromechanical behavior of heterogeneous fractured rocks: in situ characterization and numerical modelling. Bull Eng Geol Env 65:321–337

    Article  Google Scholar 

  • Chisyaki T (1984) A study of confined flow of ground water through a tunnel. Ground Water 22(2):162–167

    Article  Google Scholar 

  • Cornaton FJ (2007) Ground Water: a 3-D ground water and surface water flow, mass transport and heat transfer finite element simulator, reference manual. Centre for Hydrogeology and Geothermics, Neuchâtel

  • Dematteis A, Perrochet P, Thiery M (2005) Nouvelle liaison ferroviaire transalpine Lyon-Turin, Etudes hydrogéologiques 2002–2004. Tech rep, Lyon Turin Ferroviaire, Chambéry

  • Durham WB (1997) Laboratory observations of the hydraulic behavior of a permeable fracture from 3800 m depth in the KTB pilot hole. J Geophys Res 102:18405–18416

    Article  Google Scholar 

  • Dzikowski M, Villemin T (2009) Rapport d’expertise: hydrogéologie et géodésie de la descenderie de La Praz. Tech rep, Lyon Turin Ferroviaire (LTF), Chambery

  • El Tani M (2003) Circular tunnel in a semi-infinite aquifer. Tunn Undergr Space Tech 18(1):49–55

    Article  Google Scholar 

  • Galloway D, Burbey T (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486

    Article  Google Scholar 

  • Gargini A, Vincenzi V, Piccinini L, Zuppi G, Canuti P (2008) Groundwater flow systems in turbidites of the Northern Apennines (Italy): natural discharge and high speed railway tunnel drainage. Hydrogeol J 16(8):1577–1599

    Article  Google Scholar 

  • Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  Google Scholar 

  • Goodman R, Moye D, Van Schaikwyk A, I J (1965) Ground water inflows during tunnel driving. Bull Int Assoc Eng Geol 2(1):39–56

  • Hansmann J, Loew S, Evans K (2012) Reversible rock-slope deformations caused by cyclic water-table fluctuations in mountain slopes of the Central Alps, Switzerland. Hydrogeol J 20(1):73–91

    Article  Google Scholar 

  • Heuer R (1995) Estimating Rock Tunnel Water Inflow. In: Rapid Excavation and Tunneling Conference, San Francisco, June 18–21

  • Hopkins D (2000) The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations and faults. Int J Rock Mech Min Sci Geomech Abstr 37(1–2):175–202

    Article  Google Scholar 

  • Ingénierie-ITM (2005) Descenderie de La Praz: synthèse géologique, hydrogéologique et géotechnique. Tech rep, Lyon Turin Ferroviaire (LTF), Chambery

  • Jacob C (1940) On the flow of water in an elastic artesian aquifer. Am Geophys Union 21:574–586

    Google Scholar 

  • Jacob C (1950) Flow of ground water. In: Rouse H (ed), Engineering hydraulics: Proceedings of the Fourth Hydraulics Conference, Iowa Institute of Hydraulic Research, Iowa City

  • Kim JM, Parizek R (1999) A Mathematical Model for the Hydraulic Properties of Deforming Porous Media. Ground Water 37(4):546–554

    Article  Google Scholar 

  • Lassiaz P, Previtali I (2007) Descenderie et Galerie de reconnaissance de Modane/Villarodin—Bourget: Suivi et Auscultation Géodésique. Tech rep, Lyon Turin Ferroviaire, Chambéry

  • Lombardi G (1988) Les tassements exceptionnels au barrage de Zeuzier. Publ Swiss Soc Soil Rock Mech 118:39–47

    Google Scholar 

  • Louis C (1969) A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Tech rep 9, Rock Mech, Imperial College, London

  • Masset O, Loew S (2010) Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland. Hydrogeol J 18(4):863–891

    Article  Google Scholar 

  • Mayeur B, Fabre D (1999) Measurement and modeling of natural stresses. Application to the Maurienn- Ambin tunnel project. Bull Eng Geol Env 58(1):45–59

    Article  Google Scholar 

  • Molinero J, Samper J, Juanes R (2002) Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Eng Geol 64(4):369–386

    Article  Google Scholar 

  • Perrochet P (2004) Facteur de réduction des débits en tunnels profonds. Tech rep, Centre for Hydrogeol and Geotherm, University of Neuchâtel

  • Perrochet P (2005) Confined flow into a tunnel during progressive drilling: an analytical solution. Ground Water 43(6):943–946

    Google Scholar 

  • Perrochet P (2005) A simple solution to tunnel or well discharge under constant drawdown. Hydrogeol J 13:886–888

    Article  Google Scholar 

  • Perrochet P, Dematteis A (2007) Modeling transient discharge into a tunnel drilled in a heterogeneus formation. Ground Water 45(6):786–790

    Article  Google Scholar 

  • Preisig G, Cornaton F, Perrochet P (2012a) Regional flow simulation in fractured aquifers using stress-dependent parameters. Ground Water 50(3):376–385

    Article  Google Scholar 

  • Preisig G, Cornaton FJ, Perrochet P (2012b) Simulation of flow in fractured rocks using effective stress-dependent parameters and aquifer consolidation. In: Models—repositories of knowledge, MODELCARE 2011, vol 355. IAHS Publication, pp 273–279

  • Rutqvist J, Stephansson O (1996) A cyclic hydraulic jacking test to determine the in situ stress normal to a fracture. Int J Rock Mech Min Sci Geomech Abstr 33(7):695–711

    Article  Google Scholar 

  • Schneider T (1982) Geological Aspects of the Extraordinary Behaviour of Zeuzier Arch Dam. Wasser, Energie, Luft - Eau, Energie, Air 74(3):81–94

    Google Scholar 

  • Schweisinger T, Svenson E, Murdoch L (2009) Introduction to hydromechanical well tests in fractured rock aquifers. Ground Water 47(1):69–79

    Article  Google Scholar 

  • SOGREAH Consultants (2007) Descenderie de Modane/Villarodin—Bourget: étude de faisabilité de reutilisation des eaux d’exhaure de la partie montante. Tech rep, Lyon Turin Ferroviaire (LTF), Chambery

  • Terzaghi K (1923) Die berechnung der durchlässigkeitziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Akad Wissensch Wien Sitzungsber Mathnaturwissensch Klasse IIa 142(3-4):125–138

    Google Scholar 

  • Tsang Y, Witherspoon P (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86(B10):9287–9298

    Article  Google Scholar 

  • Vulliet L, Koelbl O, Parriaux A, Védy JC (2003) Gutachtenbericht über die Setzungen von St. German, in Auftrag der BLS Alptransit AG. Tech rep

  • Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci Geomech Abstr 18:429–435

    Article  Google Scholar 

  • Zangerl C, Eberhardt E, Loew S (2003) Ground settlements above tunnels in fractured crystalline rock: numerical analysis of coupled hydromechanical mechanisms. Hydrogeol J 11:162–173

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed within the framework of the Lyon Turin Ferroviaire project (LTF), which provided the data observed in the field. The authors wish to thank LTF for the collaboration, and are particularly grateful to Nathalie Monin. Thanks are also to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Preisig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preisig, G., Dematteis, A., Torri, R. et al. Modelling Discharge Rates and Ground Settlement Induced by Tunnel Excavation. Rock Mech Rock Eng 47, 869–884 (2014). https://doi.org/10.1007/s00603-012-0357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0357-4

Keywords

Navigation