Skip to main content

Advertisement

Log in

Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland

Distribution de la conductivité hydraulique dans des roches cristallines, déduite des flux entrants dans des tunnels et galeries des Alpes centrales, Suisse

Distribución de la conductividad hidráulica en rocas cristalinas, derivadas de flujos entrantes a túneles y galerías en los Alpes centrales, Suiza

基于瑞士中阿尔卑斯山脉隧道及巷道涌水的结晶岩中渗透系数的分布

Distribuição da condutividade hidráulica em rochas cristalinas, obtida a partir de fluxos para túneis e galerias nos Alpes Centrais, Suíça

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Inflow data from 23 tunnels and galleries, 136 km in length and located in the Aar and Gotthard massifs of the Swiss Alps, have been analyzed with the objective (1) to understand the 3-dimensional spatial distribution of groundwater flow in crystalline basement rocks, (2) to assess the dependency of tunnel inflow rate on depth, tectonic overprint, and lithology, and (3) to derive the distribution of fracture transmissivity and effective hydraulic conductivity at the 100-m scale. Brittle tectonic overprint is shown to be the principal parameter regulating inflow rate and dominates over depth and lithology. The highest early time inflow rate is 1,300 l/s and has been reported from a shallow hydropower gallery intersecting a 200-m wide cataclastic fault zone. The derived lognormal transmissivity distribution is based on 1,361 tunnel intervals with a length of 100 m. Such interval transmissivities range between 10−9 and 10−1 m2/s within the first 200–400 m of depth and between 10−9 and 10−4 m2/s in the depth interval of 400–1,500 m below ground surface. Outside brittle fault zones, a trend of decreasing transmissivity/hydraulic conductivity with increasing depth is observed for some schistous and gneissic geological units, whereas no trend is identified for the granitic units.

Résumé

Des données sur le flux entrant dans 23 tunnels et galeries, sur une longueur de 136 km, localisés dans les massifs de l’Aar et du Gothard, Alpes suisses, ont été analysées avec pour objectifs (1) de comprendre la distribution spatiale du flux d’écoulement souterrain dans le substrat cristallin, (2) d’évaluer la relation entre le flux incident, la profondeur, la tectonique et la lithologie, (3) de représenter la distribution de la transmissivité de fracturation et la conductivité hydaulique efficace à l’échelle 100 m. La superposition de structures tectoniques apparaît comme le principal paramètre contrôlant le flux entrant, prédominant sur la profondeur et sur la lithologie. A ce jour, le débit entrant le plus élevé est 1,300 l/s. On l’a enregistré dans une galerie hydroélectrique peu profonde recoupant une zone faillée cataclasée large de 200 m. La distribution lognormale de la transmissivité est basée sur 1,361 sections de tunnel longues de 100 m. Sur ces intervalles, les transmissivités s’échelonnent de 10−9 à 10−1 m2/s entre 200 m et 400 m de profondeur et de 10−9 à 10−4 m2/s entre 400 m et 1,500 m sous la surface du sol. Hors des zones écaillées faillées, on observe une tendance à la diminution de la transmissivité /conductivité hydraulique en fonction de la profondeur dans plusieurs unités gneissiques ou schisteuses, alors qu’aucune tendance n’est notée dans les unités granitiques.

Resumen

Se han analizado los datos de flujo entrantes de 23 túneles y galerías, de 136 km de largo, localizados en los macizos Aar y Gotthard de los Alpes Suizos, con el objetivo de (1)entender la distribución espacial tridimensional del flujo de aguas subterráneas en rocas del basamento cristalino, (2) evaluar la dependencia del ritmo de flujo entrante al túnel respecto de la profundidad, la sobreimpresión tectónica, y la litología, y (3) desarrollar la distribución de la transmisividad de la fractura y la conductividad hidráulica efectiva en una escala de 100 m. Se demuestra que la sobreimpresión tectónica quebradiza es el parámetro principal que regula la tasa de flujo entrante y predomina sobre la profundidad y la litología. El mayor ritmo primitivo de flujo entrante es 1,300 l/s y proviene de una galería de energía hidráulica somera que intersecta unos 200 m de ancho de zona de falla cataclástica. La distribución lognormal deducida de la transmisividad está basada en 1,361 intervalos de túnel con una longitud de 100 m. Tal transmisividad fluctúa entre 10−9 y 10−1 m2/s dentro de los primeros 200–400 m de profundidad y entre 10−9 y 10−4 m2/s en el intervalo de profundidad de 400–1,500 m por debajo de la superficie del terreno. Afuera de las zonas quebradizas de fallas, se observa una tendencia decreciente de trasmisividad/conductividad hidráulica con el incremento de la profundidad para algunas unidades geológicas esquistosas y gnéisicas, mientras no se identifica ninguna tendencia para las unidades graníticas.

摘要

分析了位于瑞士阿尔卑斯山脉Aar和Gotthard山区长136 km的23条隧道和巷道的涌水资料, 主要目的: (1) 理解结晶基底中地下水流的三维空间分布; (2) 评价涌水速率与深度、构造印记及岩性的相关程度; (3) 得到百米尺度上裂隙导水系数与有效渗透系数的分布。结果表明, 相对于深度和岩性而言, 脆性构造印记是控制入渗速率的主要参数。报道的最高早期入渗速率为1,300 l/s, 来自于一个与200 m宽破碎断层带相交的水电巷道。导水系数的对数正态分布是根据长度为100 m的1,361个隧道段得到的。地下200–400 m深度各段导水系数范围为10−9∼10−1 m2/s, 400–1,500 m深度为10−9∼10−4 m2/s。在破碎断层带以外, 在某些片岩和片麻岩地质单元中, 导水系数和渗透系数随深度增加而降低, 而在花岗岩地质单元中则趋势。

Resumo

Dados de fluxo de 23 túneis e galerias, com 136 km de comprimento, localizados nos maciços de Aar e Gotthard, nos Alpes Suíços, foram analisados, com o objectivo de (1) entender a distribuição espacial tridimensional do fluxo subterrâneo nas rochas dos maciços cristalinos, (2) verificar a dependência dos fluxos registados nos túneis em relação à profundidade, assinatura tectónica e litologias, e (3) calcular a distribuição da transmissividade das fracturas e a condutividade hidráulica efectiva a uma escala de 1:100. Verificou-se que a assinatura tectónica frágil é o principal parâmetro regulador do fluxo e domina claramente sobre a profundidade e a litologia. A maior taxa de infiltração inicial foi de 1,300 l/s e foi reportada numa galeria para produção de electricidade, executada a pouca profundidade, e intersectando uma zona cataclástica de falha, com 200 m de largura. A aplicação da distribuição lognormal para análise dos valores de transmissividade baseou-se nos dados obtidos em 1,361 secções de túnel com comprimentos de 100 m. Os intervalos de transmissividade variam entre 10−9 e 10−1 m2/s dentro dos primeiros 200–400 m de profundidade e entre 10−9 and 10−4 m2/s no intervalo de profundidade entre os 400–1,500 m abaixo da superfície. Fora das zonas de fracturação frágil, a tendência para o decréscimo da trasnmissividade/condutividade hidráulica com o incremento da profundidade é observada para algumas unidades geológicas xistentas e gnáissicas, enquanto nenhuma tendência é identificada para as unidades graníticas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abrecht J (1994) Geologic units of the Aar massif and their pre-Alpine rock associations: a critical review. Schweiz Mineral Petrogr Mitt 74:5–27

    Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci Geomech Abstr 17:241–251

    Article  Google Scholar 

  • Bucher S (2006) Talklüfte im östlichen Aarmassiv (Schöllenen-Schlucht) [Exfoliation joints in the eastern Aar massif]. Diploma Thesis, ETHZ, Switzerland

  • Cacas MC, Ledoux E, Marsilly GD, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation 1—the flow model. Water Resour Res 26:479–489

    Google Scholar 

  • Cesano D, Olofsson B, Bagtzoglou AC (2000) Parameters regulating groundwater inflows into hard rock tunnels: a statistical study of the Bolmen Tunnel in Southern Sweden. Tunn Undergr Space Technol 15:153–165

    Article  Google Scholar 

  • Choukroune P, Gapais D (1983) Strain pattern in the Aar Granite (Central Alps): orthogneiss developed by bulk inhomogeneous flattening. J Struct Geol 5:411–418

    Article  Google Scholar 

  • Clauser C (1992) Scale effects of permeability and thermal methods as constraints for regional-scale averages. In: Quintard M, Todorovic M (eds) Heat and mass transfer in porous media. Elsevier, Amsterdam

    Google Scholar 

  • Davy P, Bour O, De Dreuzy J-R, Darcel C (2006) Flow in multiscale fractal fracture networks. In: Cello G, Malamud BD (eds) Fractal analysis for natural hazards. Geological Society, London

    Google Scholar 

  • Doe TW (1991) Fractional dimension analysis of constant-pressure well tests. SPE paper 22702, Society of Petroleum Engineers, Richardson, TX

  • Eckart P, Funk H, Labhart TP (1983) Postglaziale Krustenbewegung an der Rhein-Rhone-Linie [Post-glacial crustal movements along the Rhine-Rhone line]. Vermess Photogr Kulturtech 2:83

  • El Tani M (1999) Water inflow into tunnels. In: Alten T, Backer L, Bollingmo P, Broch E, Holmoy K, Holter KG, Nielsen K (eds) World Tunnel Congress 1999 on Challenges for the 21st Century, Oslo, Norway, 29 May–3 June 1999

  • Frei B, Breitenmoser T (2006) Geologisch-geotechische und hydrogeologische Verhältnisse im Vortrieb Amsteg: Vergleich zwischen Prognose und Befund [Geological, geotechnical and hydrogeological settings of the Amsteg section: comparison of prediction and on-site findings]. In: Löw S (ed) Geologie und Geotechnik der Basistunnels am Gotthard und am Lötschberg. Hochschulverlag, Zürich

    Google Scholar 

  • Frei B, Löw S (2001) Struktur und Hydraulik der Störzonen im südlichen Aar-Massiv bei Sedrun [Structure and hydraulic properties of shearzones of the southern Aar massif in the vicinity of Sedrun]. Eclogae Geol Helv 94:13–28

    Google Scholar 

  • Frey M, Bucher K, Frank E, Mullis J (1980) Alpine metamorphism along the geotraverse Basel-Chiasso: a review. Eclogae Geol Helv 73:527–546

    Google Scholar 

  • Gargini A, Vincenzi V, Piccinini L, Zuppi G, Canuti P (2008) Groundwater flow systems in turbidities of the Northern Apennines (Italy): natural discharge and high speed railway tunnel drainage. Hydrogeol J 16:1577–1599

    Article  Google Scholar 

  • Gelhar LW (1987) Applications of Stochastic models to solute transport in fractured rocks. Technical Report SKB, SKB, Stockholm

  • Goodman RE, Moye DG, Schalkwyk AV, Javandel I (1965) Ground water inflows during tunnel driving. Bull Assoc Eng Geol 2:39–56

    Google Scholar 

  • Gudefin H (1967) Observations sur les venues d’eau au cours du percement du tunnel sous le Mont-Blanc [Findings related to inflows during the excavation of Mont Blanc tunnel]. Bull BRGM 4:95–107

    Google Scholar 

  • Herwegh M, Pfiffner OA (1999) Die Gesteine der Piora-Zone (Gotthard-Basistunnel) [Rocks of the Piora zone (Gotthard base tunnel)]. In: Loew S, Wyss R (eds) Vorerkundung und Prognose der Basistunnel am Gotthard und am Lötschberg. Balkema, Rotterdam, The Netherlands

    Google Scholar 

  • Hwang J-H, Lu C-C (2007) A semi-analytical method for analyzing the tunnel water inflow. Tunn Undergr Space Technol 22:39–46

    Article  Google Scholar 

  • Ivars DM (2006) Water inflow into excavations in fractured rock: a three-dimensional hydro-mechanical numerical study. Int J Rock Mech Min Sci 43:705–725

    Google Scholar 

  • Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant drawdown in an extensive aquifer. Trans Am Geophys Union 33

  • Keller F, Schneider TR (1982) Der Furka Basis-Tunnel: Geologie und Geotechnik [The Furka base tunnel: geology and geotechnics]. Schweizer Ing Architekt 100:512–520

  • Keller F, Wanner H, Schneider TR (1987) Geologischer Schlussbericht Gotthard-Strassentunnel, Zusammenfassung [Final geological report of the Gotthard highway tunnel]. Beiträge Geol Schweiz Geotech Serie 70:1–67

  • Klemenz W (1974) Die Hydrogeologie des Gebirges im Obergestelnstollen [Hydrogeology of the rock mass in Obergesteln gallery]. Gas-Wasser-Abwasser 54:287–289

    Google Scholar 

  • Kohl T, Signorelli S, Rybach L (2000) Constraints on Palaeo-topography by revised Apatite FT uplift rates, 25 April 2000, EGS 25th Gen. Assembly, Nice, France

  • Labhart TP (1977) Aarmassiv und Gotthardmassiv [Aar and Gotthard massifs]. Borntraeger, Berlin

  • Labhart TP (1999) Aarmassiv, Gotthardmassiv und Tavetscher Zwischenmassiv: Aufbau und Entstehungsgeschichte [Aar, Gotthard and Tavetsch massifs: structure and history]. In: Loew S, Wyss R (eds) Vorerkundung und Prognose der Basistunnels am Gotthard und am Lötschberg, Balkema, Rotterdam, pp 31–34

  • Laws S (2001) Structural, geomechanical and petrophysical properties of shear zones in the Eastern Aar Massif, Switzerland. PhD Thesis, ETHZ, Switzerland

  • Laws S, Loew S, Eberhardt E (2000) Structural make-up and geophysical properties of brittle fault zones in the eastern Aar Massif, Switzerland. International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, November 2000

  • Laws S, Eberhardt E, Loew S, Descoeudres F (2003) Geomechanical properties of shear zones in the Eastern Aar Massif, Switzerland and their implication on tunneling. Rock Mech Rock Eng 36:271–303

    Article  Google Scholar 

  • Lei S (1999) An analytical solution for steady flow into a tunnel. Ground Water 37:23–26

    Article  Google Scholar 

  • Lei S (2000) Steady flow into a tunnel with a constant pressure head. Ground Water 38:643–644

    Article  Google Scholar 

  • Loew S (2001) Natural groundwater pathways and models for regional groundwater flow in crystalline rocks. In: Seiler KP, Wohnlich S (eds) New approaches characterizing groundwater flow (Proceedings of the XXXI IAH Congress), Munich, Germany, September 2001

  • Loew S (2002) Groundwater hydraulics and environmental impacts of tunnels in crystalline rocks. Paper presented at the IAEG, Durban, South Africa, December 2002

  • Loew S, Ziegler H-J, Keller F (2000) Alptransit: engineering geology of the longest tunnel system. GeoEng2000, Melbourne, December 2000, Technomic, Melbourne, Australia

    Google Scholar 

  • Loew S, Luetzenkirchen VH, Ofterdinger US, Zangerl C, Eberhardt E, Evans KF (2007) Environmental impacts of tunnels in fractured crystalline rocks of the Central Alps. In: Krasny J, Sharp JM (eds) Groundwater in fractured rocks. Selected Papers 9, IAH, Goring, UK, pp 507–526

  • Long JCS, Karasaki K, Davey A, Peterson J, Landsfeld M, Kemeny J, Martel S (1991) An inverse approach to the construction of fracture hydrology models conditioned by geophysical data an example from the validation exercises at the Stripa mine. Int J Rock Mech Min Sci Geomech Abstr 28:121–142

    Article  Google Scholar 

  • Löw S, Ehrminger B, Klemenz W, Gilby D (1996) Abschätzung von Bergwasserzuflüssen und Oberflächenauswirkungen am Beispiel des Gotthard-Basistunnel [Estimation of tunnel inflows and surface effects using the example of Gotthard base tunnel]. In: Oddson B (ed) Instabile Hänge und andere risikorelevante natürliche Prozesse, Birkhauser, Basel, Switzerland

  • Lützenkirchen VH (2002) Structural geology and hydrogeology of brittle fault zones in the Central and Eastern Gotthard Massif, Switzerland. PhD Thesis, ETHZ, Switzerland

  • Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40. doi:10.1029/2004wr003137

  • Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293

    Article  Google Scholar 

  • Marquer PD (1990) Structures et déformation alpine dans les granites hercyniens du massif du Gotthard (Alpes centrales suisses) [Alpine structures and deformation in the Hercynian granites of the Gotthard massif (central Swiss Alps)]. Eclogae Geol Helv 83:77–97

    Google Scholar 

  • Masset O, Loew S (2007) Spatial distribution of tunnel inflows in the Central Aar and Gotthard Massifs (Switzerland). In: Ribeiro L, Chambel A, de Melo MTC (eds) XXXV Congress of the International Association of Hydrogeologists, Groundwater and Ecosystems, Lisbon, Portugal, September 2007

  • Mazurek M (1993) Geology of the crystalline basement of Northern Switzerland. Nagra Technical Report NTB 93-12, NGRA, Wettingen, Switzerland

  • Meyer J, Mazurek M, Alexander WR (1989) Petrographic and mineralogical characterization of fault zones AU 96 and AU 126. In: Bradbury MH (ed) Laboratory investigations in support of the migration experiments at the Grimsel test site. Nagra Technical Report NTB 88-23, NGRA, Wettingen, Switzerland

  • Molinero J, Samper J, Juanes R (2002) Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Eng Geol 64:369–386

    Article  Google Scholar 

  • Mourzenko VV, Thovert J-F, Adler PM (1996) Geometry of simulated fractures. Phys Rev E 53:5606–5626

    Article  Google Scholar 

  • Mourzenko VV, Thovert J-F, Adler PM (1999) Percolation and conductivity of self-affine fractures. Phys Rev E 59:4265–4284

    Article  Google Scholar 

  • Ofterdinger US (2001) Ground water flow systems in the Rotondo Granite, Central Alps (Switzerland). PhD Thesis, ETHZ, Switzerland

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40

    Google Scholar 

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064

    Article  Google Scholar 

  • Schneider TR (1974) Geologie und Geotektonik der Stollen und Schächte im Abschnitt Brienzwiler-Griespass [Geology and geotectonics of galleries and shafts in the Brienzwiler-Griespass section]. Gas-Wasser-Abwasser 54:278–286

    Google Scholar 

  • Schneider TR (1981) Wasserführung in bestehenden Untertagebauten im Kristallin der Zentralmassive und des Penninikums im Tessin und Misox [Groundwater in existing underground constructions in crystalline rocks of the Central Massifs and Peninic units in Tessin and Misox]. NIB 81-02, Nagra, Wettingen, Switzerland

  • Steck A (1968a) Die Alpidischen Strukturen in den Zentralen Aaregraniten des westlichen Aarmassivs [The Alpine structures of the granites in the western Aar massif]. Eclogae Geol Helv 61:19–48

    Google Scholar 

  • Steck A (1968b) Junge Bruchsysteme in den Zentralalpen [Late Alpine faulting in the Central Alps]. Eclogae Geol Helv 61:387–393

    Google Scholar 

  • Steck A (1984) Structures de déformations tertiaires dans les Alpes Centrales (Transversale Aar-Simplon-Ossola) [Tertiary deformation structures in the Central Alps (Aar-Simplon-Ossola transverse)]. Eclogae Geol Helv 77:55–100

    Google Scholar 

  • Steck A, Hunziker J (1994) The tertiary structural and thermal evolution of the Central Alps: Compressional and extentional structures in an orogenic belt. Tectonophysics 238:229–254

    Article  Google Scholar 

  • Stober I (1995) Die Wasserführung des kristallinen Grundgebirges (Groundwater in the crystalline basement). Enke, Stuttgart, Germany

    Google Scholar 

  • Stober I (1997) Permeabilities and chemical properties of water in crystalline rocks of the Black Forest, Germany. Aquat Geochem 3:43–60

    Article  Google Scholar 

  • Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224

    Article  Google Scholar 

  • Voborny O, Vomvoris S, Wilson S, Resele G, Hürlimann W (1994) Hydrodynamic synthesis and modeling of groundwater flow in crystaline rocks of northern Switzerland. Nagra Technical Report NTB 92-04, Nagra, Wettingen, Switzerland

  • Wang M, Kulatilake PHSW, Panda BB, Rucker ML (2001) Groundwater resources evaluation case study via discrete fracture flow modeling. Eng Geol 62:267–291

    Article  Google Scholar 

  • Wyss R (1986) Die Urseren Zone: Lithostratigraphie und Tektonik [The Urseren zone: lithostratigraphy and tectonics]. Eclogae Geol Helv 79:731–767

    Google Scholar 

  • Zangerl CJ (2003) Analysis of surface subsidence in crystalline rocks above the Gotthard highway tunnel, Switzerland. PhD Thesis, ETHZ, Switzerland

  • Zangerl C, Loew S, Eberhardt E (2006) Structure, geometry and formation of brittle discontinuities in anisotropic crystalline rocks of the Central Gotthard Massif, Switzerland. Eclogae Geol Helv 99:271–290

    Article  Google Scholar 

  • Zangerl C, Evans KF, Eberhardt E, Loew S (2008a) Consolidation settlements above deep tunnels in fractured crystalline rock: part 1, investigations above the Gotthard highway tunnel. Int J Rock Mech Min Sci 45:1195–1210

    Google Scholar 

  • Zangerl C, Eberhardt E, Evans KF, Loew S (2008b) Consolidation settlements above deep tunnels in fractured crystalline rock: part2, numerical analysis of the Gotthard highway tunnel case study. Int J Rock Mech Min Sci 45:1211–1225

    Article  Google Scholar 

  • Zangerl C, Evans KF, Eberhardt E, Loew S (2008c) Normal stiffness of fractures in granitic rock: a compilation of laboratory and in-situ experiments. Int J Rock Mech Min Sci 45:1500–1507

    Article  Google Scholar 

  • Zhang L, Franklin JA (1993) Prediction of water flow into rock tunnels: an analytical solution assuming a hydraulic conductivity gradient. Int J Rock Mech Min Sci 30:37–46

    Article  Google Scholar 

  • Zhao J (1998) Rock mass hydraulic conductivity of the Bukit Timah granite, Singapore. Eng Geol 50:211–216

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Nagra (A. Gautschi) and AlpTransit Gotthard AG (H. Ehrbar). Many original reports were provided by T. Schneider. W. Klemenz and B. Ehrminger made significant contributions to initial data compilations. U. Ofterdinger, S. Laws, V. Lützenkirchen and C. Zangerl provided additional data and scientific input for detailed inflow analyses to the Bedretto and Gotthard A2 tunnels. Three anonymous reviewers made important comments to the first draft of this paper; the authors would like to thank them also.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Masset.

Appendices

Appendix 1: Notation

A[m3/s]:

Air flow rate at airway entrance

C[]:

Channeling factor

c1[kg/kg]:

Air water content at the first measuring point 1

c2[kg/kg]:

Air water content at the first measuring point 2

F[m−1]:

Frequency of the water conducting structures

Gi[]:

Geometrical factor

h[m]:

Hydraulic head

K[m/s]:

EPM hydraulic conductivity

Keff,i[m/s]:

Diagonal components of the effective hydraulic conductivity tensor

KM[m/s]:

Matrix hydraulic conductivity

L[m]:

Tunnel length

m[kg/s]:

Water vapor mass flow rate

P[Pa]:

Absolute air pressure

Pw[Pa]:

Water vapor partial pressure

Q[m3/s]:

Flow rate

r[m]:

Tunnel radius

Rf [J/(kg × K)]:

Gas constant for wet air

\( {R_L}[J/(kg \times K)] = 287.1{ } \) :

Gas constant for air

S[]:

Storativity

S[1/m]:

Specific storage

S y []:

Specific yield

T[m2/s]:

Transmissivity

\( \overline T \left[ {{m^2}/s} \right] \) :

Mean transmissivity

t[s]:

Time elapsed

Temp[K]:

Dry bulb temperature

V[l/s]:

Water vapor volumetric flow rate

V2[l/s/m]:

Water vapor volumetric flow rate per meter

V3[l/s/hm]:

Water vapor volumetric flow rate per hectometer

c[kg/kg]:

Airway water vapor content

h[m]:

Drawdown

ρ[kg/m3]:

Air density

Appendix 2: Water vapor flow rate derivation according to the Ideal Gas Law

$$ {R_f} = {R_L}\frac{1}{{1 - 0.378\frac{{{P_w}}}{P}}} $$
(3)
$$ \rho = \frac{P}{{{R_f} \times Temp}} $$
(4)
$$ m = A \times \rho $$
(5)
$$ \Delta c = {c_2} - {c_1} $$
(6)
$$ V = m \times \Delta c $$
(7)
$$ {V_2} = V/L $$
(8)
$$ {V_3} = 100 {V_2} $$
(9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masset, O., Loew, S. Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland. Hydrogeol J 18, 863–891 (2010). https://doi.org/10.1007/s10040-009-0569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0569-1

Keywords

Navigation