Skip to main content
Log in

Naturally Accepted Boundary Conditions for the Brazilian Disc Test and the Corresponding Stress Field

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The stress field developed in the Brazilian disc is determined assuming that the disc is under the influence of a combination of two load distributions, namely normal (radial)- and shear (frictional)-stresses, both of them acting along two finite symmetric arcs of the disc periphery. The nature of the two distributions as well as the extent of the loaded arcs are obtained from the solution of the respective contact problem according to which the disc and the jaw are considered as a system of two elastic plane bodies in contact pressed against each other. Emphasis is given to the stresses due to friction since the stress field due to the specific distribution of radial pressure is already known. It is concluded that the role of friction cannot be ignored, especially in the immediate vicinity of the contact rim. Moreover, for high surface roughness the overall transverse normal stress component in this region becomes of tensile nature indicating increased possibility of premature local cracking (taking into account the low tensile strength of the materials tested using the Brazilian disc test). On the other hand, the stress field at the disc’s center is totally insensitive to both the exact distribution of radial pressure and also to the presence or absence of friction. It is thus indicated that in case fracture in the immediate vicinity of the contact rim is by some means suppressed (reducing for example drastically the coefficient of friction) the results of the Brazilian disc test correspond, in a satisfactory manner, to those predicted by Hondros’ classic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

E D, ν D :

Young’s modulus and Poisson’s ratio of Dionysos marble (the specimen’s material)

E s, ν s :

Young’s modulus and Poisson’s ratio of steel (the jaw’s material)

f :

Constant depending on the nature of the disc’s and jaw’s materials in the contact problem

K :

Constant equal to K = (κ 1 + 1)/4μ 1 + (κ 2 + 1)/4μ 2

:

The semi-contact length in the contact problem

′:

The approximate value of in the isolated real disc, \( \ell \approx \ell^{\prime} = R\sin \omega_{0} \)

L :

The periphery of the isolated real disc

n :

Coefficient of static friction

P dev :

The magnitude of the force applied by the loading device

P 0 :

Externally applied force normalized over the disc’s width (P 0 = P dev/w)

P(τ):

The distribution of the externally applied radial pressure along the contact arc in the contact problem

P(ϑ):

The distribution of the externally applied radial pressure along the loaded rims of the isolated disc

P c :

The maximum value of P(ϑ), P c = [(3πP 0)/(32KR)]1/2

(r, ϑ):

Modulus and argument of the complex variable z

ℜ:

The real part of a complex number or function

R, D, w :

The disc’s radius, diameter and thickness (width), respectively

s :

Any point ζ on the boundary γ of the mathematical unit disc, s = e

s 1, s 2, s 3, s 4 :

The end points of the contact arcs of the mathematical unit disc

t :

Any point on the periphery L of the isolated real disc, t = Re

t 1, t 2, t 3, t 4 :

The end points of the contact arcs of the isolated real disc

Τ(τ):

The distribution of frictional stresses along the contact arc in the contact problem

T(ϑ):

The distribution of the externally applied frictional stresses along the loaded rims of the isolated disc

U(τ):

The displacement mismatch of any pair of points of the disc and the jaw initially facing each other (contact problem)

\( u_{1}^{ - } (\tau ),u_{2}^{ + } (\tau ) \) :

Horizontal displacement components of the contact arc’s points of the disc and the jaw, respectively (contact problem)

u ϑ :

The transverse displacement component of the loaded rim’s points of the isolated disc due to P(ϑ)

\( v_{1}^{ - } (\tau ),v_{2}^{ + } (\tau ) \) :

Vertical displacement components of the contact arc points of the disc and the jaw, respectively (contact problem)

z :

The complex variable, z = x+iy = re

γ :

The unit circle

ζ :

The complex variable on the unit disc, \( \zeta = \xi + i\eta = \rho e^{i\vartheta } \)

κ 1, κ 2 :

Muskhelishvili’s constants for the disc and the jaw, respectively

μ 1, μ 2 :

Shear moduli of the disc and the jaw, respectively

π :

The ratio of circle’s perimeter over its diameter

ρ :

The modulus of ζ

σ t :

Tensile stress at the center of the isolated Brazilian disc

\( \sigma_{rr} ,\sigma_{\vartheta \vartheta } ,\sigma_{r\vartheta } \) :

Radial, transverse and shear stress components of the isolated real disc (their boundary values on L from the interior of the disc carry the upper index +)

\( \sigma_{rr}^{P(\vartheta )} ,\sigma_{\vartheta \vartheta }^{P(\vartheta )} ,\sigma_{r\vartheta }^{P(\vartheta )} \) :

Radial, transverse and shear stress components of the isolated real disc due to the radial pressure

\( \sigma_{rr}^{T(\vartheta )} ,\sigma_{\vartheta \vartheta }^{T(\vartheta )} ,\sigma_{r\vartheta }^{T(\vartheta )} \) :

Radial, transverse and shear stress components of the isolated real disc due to the frictional stresses

\( \sigma_{\rho \rho } ,\,\,\sigma_{\vartheta \vartheta } ,\,\,\sigma_{\rho \vartheta } \) :

Radial, transverse and shear stress components on the unit mathematical disc (their boundary values on γ from the interior of the disc carry the upper index +)

τ :

The arbitrary point of the real axis (as well as its abscissa) in the contact problem

τ cr :

The point of the contact arc, in the contact problem, where slip starts

τ′:

The approximate value of τ on the isolated real disc, τ ≈ τ′ = Rcosϑ

Φ(z), Ψ(z):

The complex potentials for the isolated real disc in the z-plane

Φ(ζ), Ψ(ζ):

The complex potentials for the isolated mathematical unit disc in the ζ-plane

ω 0 :

The semi-contact angle

References

  • Addinall E, Hackett P (1964) Tensile failure in rock-like materials. In: Spokes EM, Christiansen CR (eds) Proceedings of the 6th Symposium on Rock Mechanics. University of Missouri at Rolla, Rolla, pp 515–538

    Google Scholar 

  • Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part1). J Jpn Soc Civil Eng 29:777–787

    Google Scholar 

  • Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, 3d. Section, 16 Sept 1943, pp 126–129 (in Portuguese)

  • Conway HD, Engel PA (1969) Contact stresses in slabs due to round rough indenters. Int J Mech Sci 11:709–722

    Article  Google Scholar 

  • Fairhurst C (1964) On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Mining Sci 1:535–546

    Article  Google Scholar 

  • Ghobrial MI (1989) A photoelastic investigation on the contact stresses developed in rolls during asymmetrical flat rolling. Int J Mech Sci 31:751–764

    Article  Google Scholar 

  • Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10:243–268

    Google Scholar 

  • Hooper JA (1971) The failure of glass cylinders in diametral compression. J Mech Phys Solids 19:179–200

    Article  Google Scholar 

  • ISRM (Co-ordinators: Z.T. Bieniawski and I. Hawkes) (1978) Suggested methods for determining indirect tensile strength by the Brazil test. Int J Rock Mech Mining Sci Geomech Abstr 15:102–103

    Google Scholar 

  • Kourkoulis SK, Exadaktylos GE, Vardoulakis I (1999) U-notched Dionysos Pentelicon marble in three point bending: the effect of nonlinearity, anisotropy and microstructure. Int J Fract 98:369–392

    Article  Google Scholar 

  • Kourkoulis SK, Markides ChF, Chatzistergos PE (2012a) The Brazilian disc under parabolically varying load: theoretical and experimental study of the displacement field. Int J Solids Struct 49:959–972

    Article  Google Scholar 

  • Kourkoulis SK, Markides ChF, Chatzistergos PE (2012b) The standardized Brazilian disc test as a contact problem. Int J Rock Mech Mining Sci. doi:10.1016/j.ijrmms.2012.07.016

  • Kourkoulis SK, Markides ChF, Hemsley JA (2012c) Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test. Acta Mech doi:10.1007/s00707-012-0756-3

  • Kourkoulis SK, Markides ChF, Bakalis G (2013) Elastic contact of smooth cylinders by caustics: the Brazilian-disc test. In: Proceedings of the 10th international congress on mechanics of the Hellenic society for theoretical and applied mechanics. Chania, Crete

  • Lanaro F, Sato T, Stephensson O (2009) Microcrack modelling of Brazilian tensile tests with the boundary element method. Int J Rock Mech Mining Sci 46:450–461

    Article  Google Scholar 

  • Lavrov A, Vervoort A (2002) Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int J Rock Mech Mining Sci 39:275–283

    Article  Google Scholar 

  • Li D, Wong LNY (2012) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng. doi:10.1007/s00603-012-0257-7

  • Markides ChF, Kourkoulis SK (2012) The stress field in a standardized Brazilian disc: the influence of the loading type acting on the actual contact length. Rock Mech Rock Eng 45:145–158

    Article  Google Scholar 

  • Markides ChF, Pazis DN, Kourkoulis SK (2011) The influence of friction on the stress field of the Brazilian tensile test. Rock Mech Rock Eng 44:113–119

    Article  Google Scholar 

  • Markides ChF, Pazis DN, Kourkoulis SK (2012) The Brazilian disc under non uniform distribution of radial pressure and friction. Int J Rock Mech Mining Sci 50:47–55

    Article  Google Scholar 

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5:173–225

    Article  Google Scholar 

  • Muskhelishvili NI (1963) Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen

    Google Scholar 

  • Raptis KG, Papadopoulos GA, Costopoulos TN, Tsolakis AD (2011) Experimental study of load sharing in roller-bearing contact by caustics and photoelasticity. Am J Eng Appl Sci 4(2):294–300

    Article  Google Scholar 

  • Theocaris PS (1978) The load distribution in the generalized contact problem by caustics. In: Proceedings of the 3rd national congress on theoretical and applied mechanics. Varna, Bulgaria, 13–16 Sept 1977, vol. III, pp 105–143

  • Theocaris PS, Stassinakis CA (1978) The elastic contact of two disks by the method of caustics. Exp Mech 18(11):409–415

    Article  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the “Education and Lifelong Learning” Program THALIS-MIS380147. The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Kourkoulis.

Appendices

Appendix 1

The boundary values of the displacement components for the disc (1) and the jaw (2) in the contact region, as obtained from the contact problem (Kourkoulis et al. 2012b, c) (the disc and the jaw occupy the lower (−) and the upper (+) half planes, respectively).

$$ u_{1}^{ - } \left( \tau \right) = - \frac{{\kappa_{1} - 1}}{{24R \mu_{1} K}}\left( {\tau \sqrt {\ell^{2} - \tau^{2} } + \ell^{2} {\text{Arc}}\sin \frac{\tau }{\ell }} \right),\quad v_{1}^{ - } \left( \tau \right) = \frac{{\kappa_{1} + 1}}{{24R\mu_{1} K}}\tau^{2} $$
(7.1)
$$ u_{2}^{ + } \left( \tau \right) = - \frac{{\kappa_{2} - 1}}{{24R\mu_{2} K}}\left( {\tau \sqrt {\ell^{2} - \tau^{2} } + \ell^{2} {\text{Arc}}\sin \frac{\tau }{\ell }} \right),\quad v_{2}^{ + } \left( \tau \right) = \frac{{\kappa_{2} + 1}}{{24R \mu_{2} K}}\tau^{2} $$
(7.2)

Appendix 2

The stress field on the isolated disc due to a parabolically varying distribution P(ϑ) of radial pressure along the actual loaded rim (Markides and Kourkoulis 2012).

$$ \begin{gathered} \sigma_{{\,\,\begin{array}{*{20}c} {r\,r} \\ {\vartheta \vartheta } \\ \end{array} }}^{\,P(\vartheta )} = \frac{{P_{c} }}{{4\pi \sin^{2} \omega_{o} }}\left\{ {\left. {\begin{array}{*{20}c} {\frac{{\left( {R^{2} - r^{2} } \right)^{2} }}{{2r^{4} }}} \\ {\frac{{2r^{6} - R^{6} - r^{4} R^{2} }}{{2r^{4} R^{2} }}} \\ \end{array} } \right\rangle \cdot \sin 2\vartheta \cdot \ell n\frac{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right. \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left\langle {\begin{array}{*{20}c} \begin{gathered} \,\frac{{4\omega_{o} R^{2} \left( {R^{2} - 2r^{2} } \right)}}{{r^{4} }}\cos 2\vartheta + \left( {\frac{{r^{4} - R^{4} + 2r^{2} R^{2} }}{{r^{4} }}\cos 2\vartheta + 2\cos 2\omega_{o} } \right) \hfill \\ \hfill \\ \end{gathered} \\ { - \frac{{4\omega_{o} R^{4} }}{{r^{4} }}\cos 2\vartheta + \left( {\frac{{2r^{6} + R^{6} - r^{4} R^{2} }}{{r^{4} R^{2} }}\cos 2\vartheta + 2\cos 2\omega_{o} } \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\ \end{array} } \right. \hfill \\ \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.\left\langle {\begin{array}{*{20}c} \begin{gathered} \left. \begin{gathered} 2\pi - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} \hfill \\ \,\,\,\,\,\, \hfill \\ \,\,\,\,\,\,\, - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} \hfill \\ \end{gathered} \right\}\,\,\,\,region\,\,I \hfill \\ \hfill \\ \hfill \\ \end{gathered} \\ {the\,\,same\,\,\exp ression\,\,without\,\,2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,region\,\,II} \\ \end{array} } \right. \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \pm \left( {R^{2} - r^{2} } \right)\left[ {\left( {\frac{{r^{2} }}{{R^{2} }}\sin 4\vartheta + 2\cos 2\omega_{o} \sin 2\vartheta } \right)\left( {\frac{{ - R^{2} \cos 2\omega_{o} - r^{2} \cos 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + } \right.} \right. \hfill \\ \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. {\,\,\,.\frac{{R^{2} \cos 2\omega_{o} + r^{2} \cos 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right) - \left( {\frac{{r^{2} }}{{R^{2} }}\cos 4\vartheta + 2\cos 2\omega_{o} \cos 2\vartheta + \frac{{R^{2} }}{{r^{2} }}} \right) \cdot \hfill \\ \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. {\left. { \cdot \left( {\frac{{R^{2} \sin 2\omega_{o} - r^{2} \sin 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + \frac{{R^{2} \sin 2\omega_{o} + r^{2} \sin 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right)} \right] - 4\omega_{o} \cos 2\omega_{o} } \right\} \hfill \\ \end{gathered} $$
(8.1)
$$ \begin{gathered} \sigma_{\,\,\,r\vartheta }^{\,P(\vartheta )} = \frac{{P_{c} \left( {R^{2} - r^{2} } \right)}}{{4\pi \sin^{2} \omega_{o} }}\left[ {\frac{{r^{4} - R^{4} }}{{2r^{4} R^{2} }} \cdot \cos 2\vartheta \cdot \ell n\frac{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + } \right.\,\,\frac{{4\omega_{o} R^{2} }}{{r^{4} }}\sin 2\vartheta - \frac{{r^{4} + R^{4} }}{{r^{4} R^{2} }}\sin 2\vartheta \cdot \hfill \\ \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cdot \left\langle {\begin{array}{*{20}c} \begin{gathered} \left. \begin{gathered} 2\pi - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} \hfill \\ \,\,\,\,\,\, \hfill \\ \,\,\,\,\,\,\, - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} \hfill \\ \end{gathered} \right\}\,\,\,\,\,\,region\,\,I \hfill \\ \hfill \\ \end{gathered} \\ {\,the\,\,same\,\,\exp ression\,\,without\,\,2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,region\,\,II} \\ \end{array} } \right. \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {\frac{{r^{2} }}{{R^{2} }}\sin 4\vartheta + 2\cos 2\omega_{o} \sin 2\vartheta } \right)\left( \begin{gathered} \frac{{R^{2} \sin 2\omega_{o} - r^{2} \sin 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} \hfill \\ \hfill \\ \end{gathered} \right. \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\left. { + \frac{{R^{2} \sin 2\omega_{o} + r^{2} \sin 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right) + \left( {\frac{{r^{2} }}{{R^{2} }}\cos 4\vartheta + 2\cos 2\omega_{o} \cos 2\vartheta + \frac{{R^{2} }}{{r^{2} }}} \right) \cdot \hfill \\ \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. { \cdot \left( {\frac{{ - R^{2} \cos 2\omega_{o} - r^{2} \cos 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + \frac{{R^{2} \cos 2\omega_{o} + r^{2} \cos 2\vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right)} \right] \hfill \\ \end{gathered} $$
(8.2)

Appendix 3

The u ϑ -component of the displacement field in the isolated disc due to a parabolically varying distribution P(ϑ) of radial pressure along the actual loaded rim (Kourkoulis et al. 2012a).

$$ \begin{gathered} u_{\vartheta } = \frac{{P_{c} }}{{8\pi \mu \sin^{2} \omega_{o} }}\left\{ { - \left[ {\left( {\kappa + 1} \right)\cos 2\omega_{o} r + \left[ {\frac{{\left( {\kappa + 3} \right)r^{3} }}{{6R^{2} }} - \frac{{\left( {\kappa - 1} \right)R^{2} }}{2r} - \frac{{3r^{4} + R^{4} }}{{3r^{3} }}} \right]\cos 2\vartheta } \right] \cdot } \right. \hfill \\ \,\,\,\,\,\,\,\,\,\, \cdot \ell n\sqrt {\frac{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} + \left[ {\frac{{\left( {\kappa + 3} \right)r^{3} }}{{6R^{2} }} + \frac{{\left( {\kappa - 1} \right)R^{2} }}{2r} - \frac{{3r^{4} - R^{4} }}{{3r^{3} }}} \right]\sin 2\vartheta \cdot \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\, \cdot \left\langle {\begin{array}{*{20}c} \begin{gathered} \left. \begin{gathered} 2\pi - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} \hfill \\ \,\,\,\,\,\, \hfill \\ \,\,\,\,\,\,\, - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} \hfill \\ \end{gathered} \right\}\,\,\,\,\,\,\,\,\,\,region\,\,I \hfill \\ \hfill \\ \end{gathered} \\ {\,\,the\,\,same\,\,\exp ression\,\,without\,\,2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,region\,\,II} \\ \end{array} } \right.\,\,\,\,\,\,\,\,\,\, \hfill \\ \,\,\,\,\,\, + \frac{{4\left( {\kappa + 1} \right)R}}{3}\left( {\sin^{3} \omega_{o} \cos \vartheta - \cos^{3} \omega_{o} \sin \vartheta } \right)\ell n\sqrt {\frac{{R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} + \vartheta } \right)}}{{R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} + \vartheta } \right)}}} + \frac{{4\left( {\kappa - 1} \right)R}}{3} \cdot \hfill \\ \,\,\,\,\, \cdot \left( {\sin^{3} \omega_{o} \sin \vartheta + \cos^{3} \omega_{o} \cos \vartheta } \right) \cdot \left\langle {\begin{array}{*{20}c} \begin{gathered} \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }}\,\,\,\,\,\,\,\,\,region\,\,I \hfill \\ \hfill \\ \end{gathered} \\ {\,\,the\,\,same\,\,\exp ression\,\,plus\,\,\,\,\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,region\,\,II} \\ \end{array} } \right. \hfill \\ \,\,\,\, + \frac{{4\left( {\kappa + 1} \right)R}}{3}\left( {\sin^{3} \omega_{o} \cos \vartheta + \cos^{3} \omega_{o} \sin \vartheta } \right)\ell n\sqrt {\frac{{R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} - \vartheta } \right)}}{{R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} - \vartheta } \right)}}} + \frac{{4\left( {\kappa - 1} \right)R}}{3} \cdot \hfill \\ \,\,\, \cdot \left( {\sin^{3} \omega_{o} \sin \vartheta - \cos^{3} \omega_{o} \cos \vartheta } \right) \cdot \left\langle {\begin{array}{*{20}c} \begin{gathered} - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}\,\,\,\,\,\,region\,\,I \hfill \\ \hfill \\ \end{gathered} \\ {\,the\,\,same\,\,\exp ression\,\,plus\,\,\,\,\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,region\,\,II} \\ \end{array} } \right.\,\left| {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \right\rangle \,\,\,\,\, - \,2\left( {\kappa - 1 + \frac{{2R^{2} }}{{3r^{2} }}} \right)\frac{{\omega_{o} R^{2} \sin 2\vartheta }}{r}\left. {\begin{array}{*{20}c} {} \\ {} \\ {} \\ {} \\ \end{array} } \right\} \hfill \\ \end{gathered} $$
(9.1)

Appendix 4

The stress field on the isolated disc due to distribution T(ϑ) of frictional stresses.

$$ \begin{gathered} \sigma_{rr}^{T(\vartheta )} = \frac{5\pi Rnw}{{288\left( {10 + \pi^{2} } \right)K^{2} P_{dev} }}\left( {R^{2} - r^{2} } \right)\left\{ {\left[ { - \left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{r^{2} + 3R^{2} }}{{2r^{3} R}}\cos \vartheta + \frac{{5R^{6} - r^{6} }}{{2r^{5} R^{3} }}\cos 3\vartheta } \right]} \right. \cdot \hfill \\ \ell n\frac{{\left[ {R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right]\left[ {R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right]}}{{\left[ {R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right]\left[ {R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right]}} + \left[ {\left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{r^{2} - 3R^{2} }}{{r^{3} R}}\sin \vartheta + \frac{{5R^{6} + r^{6} }}{{r^{5} R^{3} }}\sin 3\vartheta } \right] \cdot \hfill \\ \left( {\tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right) - \hfill \\ 2\left[ {\frac{{r^{4} \left( {4\sin^{2} \omega_{o} - 3} \right) - R^{4} }}{{r^{4} }}\cos 2\vartheta - \frac{{r^{2} }}{{R^{2} }}\cos 4\vartheta + \left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{R^{2} }}{{r^{2} }}} \right] \cdot \hfill \\ \left[ {\frac{{\left( {R^{2} + r^{2} } \right)\sin \omega_{o} - 2r^{2} \cos \vartheta \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }} + \frac{{\left( {R^{2} + r^{2} } \right)\sin \omega_{o} - 2r^{2} \cos \vartheta \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right] + \hfill \\ 2\sin 2\vartheta \left( {4\sin^{2} \omega_{o} - 3 - \frac{{2r^{2} \cos 2\vartheta }}{{R^{2} }} + \frac{{R^{4} }}{{r^{4} }}} \right)\left[ {\frac{{\left( {R^{2} + r^{2} } \right)\cos \omega_{o} + 2r^{2} \sin \vartheta \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right. - \hfill \\ \left. {\frac{{\left( {R^{2} + r^{2} } \right)\cos \omega_{o} - 2r^{2} \sin \vartheta \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right] + \frac{{3\pi^{2} }}{{8\sin \omega_{o} }}\left[ {\left( { - \cos^{2} \omega_{o} \frac{{2R^{2} }}{{r^{4} }}\cos 2\vartheta + \frac{{4\sin^{2} \omega_{o} - 3}}{{2r^{2} }} + \frac{{r^{8} - 3R^{8} }}{{4r^{6} R^{4} }}\cos 4\vartheta } \right)} \right. \cdot \hfill \\ \ell n\frac{{\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} } \right]^{2} }}{{\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} } \right]\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} } \right]}} - \sin 2\vartheta \left( {\cos^{2} \omega_{o} \frac{{4R^{2} }}{{r^{4} }} + \frac{{r^{8} + 3R^{8} }}{{r^{6} R^{4} }}\cos 2\vartheta } \right) \cdot \hfill \\ \left[ {2\left( {\tan^{ - 1} \frac{R + r\sin \vartheta }{r\cos \vartheta } - \tan^{ - 1} \frac{R - r\sin \vartheta }{r\cos \vartheta }} \right) - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right. + \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \hfill \\ \left. {\tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right] + \left[ {\frac{{r^{4} \cos 5\vartheta }}{{2R^{4} }} + } \right.\frac{{4r^{6} \cos^{2} \omega_{o} + R^{6} }}{{2r^{4} R^{2} }}\cos 3\vartheta + \hfill \\ \left. {\frac{{2R^{2} \cos^{2} \omega_{o} - r^{2} \left( {4\sin^{2} \omega_{o} - 3} \right)}}{{r^{2} }}\cos \vartheta } \right]\left[ {\frac{{2\left( {R^{2} + r^{2} } \right)\cos \vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} }}} \right. - \frac{{\left( {R^{2} + r^{2} } \right)\cos \vartheta - 2R^{2} \sin \omega_{o} \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} - \hfill \\ \left. {\frac{{\left( {R^{2} + r^{2} } \right)\cos \vartheta - 2R^{2} \sin \omega_{o} \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right] - \left[ {\frac{{r^{4} \sin 5\vartheta }}{{2R^{4} }} + } \right.\frac{{4r^{6} \cos^{2} \omega_{o} - R^{6} }}{{2r^{4} R^{2} }}\sin 3\vartheta - \hfill \\ \left. {\frac{{2R^{2} \cos^{2} \omega_{o} + r^{2} \left( {4\sin^{2} \omega_{o} - 3} \right)}}{{r^{2} }}\sin \vartheta } \right]\left[ {\frac{{2\left( {R^{2} - r^{2} } \right)\sin \vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} }}} \right. + \frac{{\left( {R^{2} + r^{2} } \right)\sin \vartheta - 2R^{2} \cos \omega_{o} \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + \hfill \\ \left. {\left. {\left. {\frac{{\left( {R^{2} + r^{2} } \right)\sin \vartheta + 2R^{2} \cos \omega_{o} \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right]} \right] + \frac{{4\sin \omega_{o} }}{{r^{2} }}\left[ {\left( {4 + \frac{{3\pi^{2} }}{8}} \right)\frac{{R^{2} }}{{r^{2} }}\cos 2\vartheta - \sin^{2} \omega_{o} \left( {\frac{16}{3} + \frac{{3\pi^{2} }}{8}} \right) + \frac{{3\pi^{2} }}{8} + 4} \right]} \right\} \hfill \\ \end{gathered} $$
(10.1)
$$ \begin{gathered} \sigma_{\vartheta \vartheta }^{T(\vartheta )} = \frac{5\pi Rnw}{{288\left( {10 + \pi^{2} } \right)K^{2} P_{dev} }}\left\{ {\left[ {\left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{3\left( {r^{4} + R^{4} } \right) + 2r^{2} R^{2} }}{{2r^{3} R}}\cos \vartheta - \frac{{5\left( {r^{8} + R^{8} } \right) - r^{2} R^{2} \left( {r^{4} + R^{4} } \right)}}{{2r^{5} R^{3} }}\cos 3\vartheta } \right]} \right. \cdot \hfill \\ \ell n\frac{{\left[ {R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right]\left[ {R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right]}}{{\left[ {R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right]\left[ {R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right]}} - \left[ {\left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{3\left( {r^{4} - R^{4} } \right)}}{{r^{3} R}}\sin \vartheta } \right. + \hfill \\ \left. {\frac{{5\left( {R^{8} - r^{8} } \right) - r^{2} R^{2} \left( {R^{4} - r^{4} } \right)}}{{r^{5} R^{3} }}\sin 3\vartheta } \right]\left( {\tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + } \right.\tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \hfill \\ \left. {\tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right) + 2\left( {R^{2} - r^{2} } \right)\left[ {\frac{{r^{4} \left( {4\sin^{2} \omega_{o} - 3} \right) - R^{4} }}{{r^{4} }}\cos 2\vartheta - \frac{{r^{2} }}{{R^{2} }}\cos 4\vartheta + \left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{R^{2} }}{{r^{2} }}} \right] \cdot \hfill \\ \left[ {\frac{{\left( {R^{2} + r^{2} } \right)\sin \omega_{o} - 2r^{2} \cos \vartheta \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }} + \frac{{\left( {R^{2} + r^{2} } \right)\sin \omega_{o} - 2r^{2} \cos \vartheta \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right] - \hfill \\ 2\left( {R^{2} - r^{2} } \right)\sin 2\vartheta \left( {4\sin^{2} \omega_{o} - 3 - \frac{{2r^{2} \cos 2\vartheta }}{{R^{2} }} + \frac{{R^{4} }}{{r^{4} }}} \right)\left[ {\frac{{\left( {R^{2} + r^{2} } \right)\cos \omega_{o} + 2r^{2} \sin \vartheta \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right. - \hfill \\ \left. {\frac{{\left( {R^{2} + r^{2} } \right)\cos \omega_{o} - 2r^{2} \sin \vartheta \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right] + \frac{{3\pi^{2} }}{{8\sin \omega_{o} }}\left[ {\left[ {\cos^{2} \omega_{o} \frac{{4\left( {r^{6} + R^{6} } \right)}}{{2r^{4} R^{2} }}\cos 2\vartheta - \left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{r^{2} + R^{2} }}{{2r^{2} }}} \right. + } \right. \hfill \\ \left. {\frac{{3\left( {r^{10} + R^{10} } \right) - r^{2} R^{2} \left( {r^{6} + R^{6} } \right)}}{{4r^{6} R^{4} }}\cos 4\vartheta } \right]\ell n\frac{{\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} } \right]^{2} }}{{\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} } \right]\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} } \right]}} - \hfill \\ \sin 2\vartheta \left[ {\cos^{2} \omega_{o} \frac{{4\left( {r^{6} - R^{6} } \right)}}{{r^{4} R^{2} }} + \frac{{3\left( {r^{10} - R^{10} } \right) - r^{2} R^{2} \left( {r^{6} - R^{6} } \right)}}{{r^{6} R^{4} }}\cos 2\vartheta } \right]\left[ {2\left( {\tan^{ - 1} \frac{R + r\sin \vartheta }{r\cos \vartheta } - \tan^{ - 1} \frac{R - r\sin \vartheta }{r\cos \vartheta }} \right) - } \right. \hfill \\ \left. {\tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right] - \hfill \\ \left( {R^{2} - r^{2} } \right)\left[ {\frac{{r^{4} \cos 5\vartheta }}{{2R^{4} }} + \frac{{4r^{6} \cos^{2} \omega_{o} + R^{6} }}{{2r^{4} R^{2} }}\cos 3\vartheta + \frac{{2R^{2} \cos^{2} \omega_{o} - r^{2} \left( {4\sin^{2} \omega_{o} - 3} \right)}}{{r^{2} }}\cos \vartheta } \right] \cdot \hfill \\ \left[ {\frac{{2\left( {R^{2} + r^{2} } \right)\cos \vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} }} - \frac{{\left( {R^{2} + r^{2} } \right)\cos \vartheta - 2R^{2} \sin \omega_{o} \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} - \frac{{\left( {R^{2} + r^{2} } \right)\cos \vartheta - 2R^{2} \sin \omega_{o} \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right] + \hfill \\ \left( {R^{2} - r^{2} } \right)\left[ {\frac{{r^{4} \sin 5\vartheta }}{{2R^{4} }} + \frac{{4r^{6} \cos^{2} \omega_{o} - R^{6} }}{{2r^{4} R^{2} }}\sin 3\vartheta - \frac{{2R^{2} \cos^{2} \omega_{o} + r^{2} \left( {4\sin^{2} \omega_{o} - 3} \right)}}{{r^{2} }}\sin \vartheta } \right] \cdot \hfill \\ \left. {\left[ {\frac{{2\left( {R^{2} - r^{2} } \right)\sin \vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} }} + \frac{{\left( {R^{2} + r^{2} } \right)\sin \vartheta - 2R^{2} \cos \omega_{o} \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + \frac{{\left( {R^{2} + r^{2} } \right)\sin \vartheta + 2R^{2} \cos \omega_{o} \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right]} \right] - \hfill \\ \left. {\frac{{4\sin \omega_{o} }}{{r^{2} }}\left[ {\left( {4 + \frac{{3\pi^{2} }}{8}} \right)\frac{{r^{6} + R^{6} }}{{r^{2} R^{2} }}\cos 2\vartheta - \left( {r^{2} + R^{2} } \right)\left[ {\sin^{2} \omega_{o} \left( {\frac{16}{3} + \frac{{3\pi^{2} }}{8}} \right) - \frac{{3\pi^{2} }}{8} - 4} \right]} \right]} \right\} \hfill \\ \end{gathered} $$
(10.2)
$$ \begin{gathered} \sigma_{r\vartheta }^{T(\vartheta )} = \frac{5\pi Rnw}{{288\left( {10 + \pi^{2} } \right)K^{2} P_{dev} }}\left\{ {\left[ {\left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{r^{4} + 3R^{4} }}{{r^{3} R}}\cos \vartheta - \frac{{r^{6} \left( {3r^{2} - R^{2} } \right) - R^{6} \left( {3r^{2} - 5R^{2} } \right)}}{{r^{5} R^{3} }}\cos 3\vartheta } \right]} \right. \cdot \hfill \\ \left( {\tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right) - \hfill \\ \left[ {\left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{\left( {R^{2} - r^{2} } \right)\left( {r^{2} + 3R^{2} } \right)}}{{2r^{3} R}}\sin \vartheta + \frac{{r^{6} \left( {3r^{2} - R^{2} } \right) + R^{6} \left( {3r^{2} - 5R^{2} } \right)}}{{2r^{5} R^{3} }}\sin 3\vartheta } \right] \cdot \hfill \\ \ln \frac{{\left[ {R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right]\left[ {R^{2} + r^{2} - 2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right]}}{{\left[ {R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right]\left[ {R^{2} + r^{2} + 2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right]}} + 2\left( {R^{2} - r^{2} } \right)\left[ {\frac{{r^{4} \left( {4\sin^{2} \omega_{o} - 3} \right) - R^{4} }}{{r^{4} }}\cos 2\vartheta } \right. + \hfill \\ \left. {\left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{R^{2} }}{{r^{2} }} - \frac{{r^{2} }}{{R^{2} }}\cos 4\vartheta } \right]\left[ {\frac{{\left( {R^{2} + r^{2} } \right)\cos \omega_{o} + 2r^{2} \sin \vartheta \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }} - \frac{{\left( {R^{2} + r^{2} } \right)\cos \omega_{o} - 2r^{2} \sin \vartheta \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right] + \hfill \\ 2\left( {R^{2} - r^{2} } \right)\sin 2\vartheta \left[ {\frac{{r^{4} \left( {4\sin^{2} \omega_{o} - 3} \right) + R^{4} }}{{r^{4} }} - \frac{{2r^{2} }}{{R^{2} }}\cos 2\vartheta } \right]\left[ {\frac{{\left( {R^{2} + r^{2} } \right)\sin \omega_{o} - 2r^{2} \cos \vartheta \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right. + \hfill \\ \left. {\frac{{\left( {R^{2} + r^{2} } \right)\sin \omega_{o} - 2r^{2} \cos \vartheta \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }}} \right] - \frac{{3\pi^{2} }}{{4\sin \omega_{o} }}\left[ {\left[ {\cos^{2} \omega_{o} \frac{{R^{4} \left( {r^{2} - 2R^{2} } \right) - r^{6} }}{{r^{4} R^{2} }}\cos 2\vartheta + \left( {4\sin^{2} \omega_{o} - 3} \right)\frac{{R^{2} }}{{2r^{2} }}} \right.} \right. + \hfill \\ \left. {\frac{{r^{8} \left( {R^{2} - 2r^{2} } \right) + R^{8} \left( {2r^{2} - 3R^{2} } \right)}}{{4r^{6} R^{4} }}\cos 4\vartheta } \right]\left[ {2\left( {\tan^{ - 1} \frac{R + r\sin \vartheta }{r\cos \vartheta } - \tan^{ - 1} \frac{R - r\sin \vartheta }{r\cos \vartheta }} \right) - \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right. + \hfill \\ \tan^{ - 1} \frac{{R\cos \omega_{o} - r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} - \left. {\tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} + r\cos \vartheta }} + \tan^{ - 1} \frac{{R\cos \omega_{o} + r\sin \vartheta }}{{R\sin \omega_{o} - r\cos \vartheta }}} \right] - \sin 2\vartheta \left[ {\cos^{2} \omega_{o} \frac{{R^{6} - r^{6} + R^{4} \left( {R^{2} - r^{2} } \right)}}{{2r^{4} R^{2} }}} \right. + \hfill \\ \left. {\frac{{r^{8} \left( {R^{2} - 2r^{2} } \right) + R^{8} \left( {3R^{2} - 2r^{2} } \right)}}{{4r^{6} R^{4} }}\cos 2\vartheta } \right]\ln \frac{{\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} } \right]^{2} }}{{\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} } \right]\left[ {\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} } \right]}} - \hfill \\ \left( {R^{2} - r^{2} } \right)\left[ {\frac{{r^{4} }}{{4R^{4} }}\cos 5\vartheta + \frac{{4r^{6} \cos^{2} \omega_{o} + R^{6} }}{{4r^{4} R^{2} }}\cos 3\vartheta + \frac{{2R^{2} \cos^{2} \omega_{o} - r^{2} \left( {4\sin^{2} \omega_{o} - 3} \right)}}{{2r^{2} }}\cos \vartheta } \right] \cdot \hfill \\ \left[ {\frac{{2\left( {R^{2} - r^{2} } \right)\sin \vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} }} + \frac{{\left( {R^{2} + r^{2} } \right)\sin \vartheta - 2R^{2} \cos \omega_{o} \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} + \frac{{\left( {R^{2} + r^{2} } \right)\sin \vartheta + 2R^{2} \cos \omega_{o} \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right] - \hfill \\ \left( {R^{2} - r^{2} } \right)\left[ {\frac{{r^{4} }}{{4R^{4} }}\sin 5\vartheta + \frac{{4r^{6} \cos^{2} \omega_{o} - R^{6} }}{{4r^{4} R^{2} }}\sin 3\vartheta - \frac{{2R^{2} \cos^{2} \omega_{o} + r^{2} \left( {4\sin^{2} \omega_{o} - 3} \right)}}{{2r^{2} }}\sin \vartheta } \right] \cdot \hfill \\ \left. {\left[ {\frac{{2\left( {R^{2} + r^{2} } \right)\cos \vartheta }}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \vartheta } \right)^{2} }} - \frac{{\left( {R^{2} + r^{2} } \right)\cos \vartheta - 2R^{2} \sin \omega_{o} \sin \left( {\omega_{o} + \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} + \vartheta } \right)} \right)^{2} }} - \frac{{\left( {R^{2} + r^{2} } \right)\cos \vartheta - 2R^{2} \sin \omega_{o} \sin \left( {\omega_{o} - \vartheta } \right)}}{{\left( {R^{2} + r^{2} } \right)^{2} - \left( {2rR\sin \left( {\omega_{o} - \vartheta } \right)} \right)^{2} }}} \right]} \right] - \hfill \\ \sin \omega_{o} \left. {\left( {8 + \frac{{3\pi^{2} }}{4}} \right)\frac{{r^{6} - R^{6} - R^{4} \left( {R^{2} - r^{2} } \right)}}{{r^{4} R^{2} }}\sin 2\vartheta } \right\} \hfill \\ \end{gathered} $$
(10.3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markides, C.F., Kourkoulis, S.K. Naturally Accepted Boundary Conditions for the Brazilian Disc Test and the Corresponding Stress Field. Rock Mech Rock Eng 46, 959–980 (2013). https://doi.org/10.1007/s00603-012-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0351-x

Keywords

Navigation