Skip to main content
Log in

Triggering of Seismicity Remote from Active Mining Excavations

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary.

Observations of seismicity and ground control problems in the Sudbury mining camp have shown that late-stage (young) sub-vertical strike-slip faults are sensitive to small mining-induced stress changes. The strength-limited nature of stress measurements made in the region indicates that these structures are in a state of marginal stability. Numerical continuum models are developed to analyze the behavior of such structures. In the models, shear strain localizations (faults) evolve such that there is close interaction between the fault system, stresses, and boundary deformation. Fault slip activity in these systems is naturally sporadic and reproduces the commonly observed Gutenberg-Richter magnitude frequency relation. It is shown that a relatively minor disturbance to such a system can trigger significant seismicity remote from the source of the disturbance, a behavior which cannot be explained by conventional numerical stress analysis methodologies. The initially uniform orientation of the stress field in these systems evolves with increasing disorder, which explains much of the scatter commonly observed in data sets of stress measurements. Based on these results, implications for stress measurement programs and numerical stability analysis of faults in mines are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Amadei O. Stephansson (1997) Rock stress and its measurement Chapman and Hall London

    Google Scholar 

  • E. Anderson (1951) The dynamics of faulting and Dyke Formation with applications to Britain Oliver and Boyd Edinburgh

    Google Scholar 

  • B. Arjang (1991) ArticleTitlePre-mining stresses at some hard rock mines in the Canadian Shield CIM Bull. 84 IssueID945 80–86

    Google Scholar 

  • B. Arjang (1998) Canadian crustal stresses and their application to mine design R. K. Singhal (Eds) Mine planning and equipment selection Balkema Rotterdam 269–274

    Google Scholar 

  • Arjang, B., Herget, G. (1997): In situ ground stresses in the Canadian hardrock mines: an update. Int. J. Rock Mech. Min. Sci. 34(3–4), paper No. 015.

    Google Scholar 

  • P. Bak C. Tang (1989) ArticleTitleEarthquakes as a self-organized critical phenomenon J. Geophys. Res. 94 15635–15637

    Google Scholar 

  • D. Beck B. Brady (2002) ArticleTitleEvaluation and application of controlling parameters for seismic events in hard-rock mines Int. J. Rock Mech. Min. Sci. 39 633–642 Occurrence Handle10.1016/S1365-1609(02)00061-8

    Article  Google Scholar 

  • D. Beck B. H. G. Brady D. R. Grant (1997) ArticleTitleInduced stress and microseismicity in the 3000 orebody, Mount Isa Geotech. Geol. Engng. 15 221–233

    Google Scholar 

  • Board, M. (1996): Numerical examination of mining-induced seismicity. In: EUROCK ’96 Special Lectures, 1996 ISRM International Symposium on Prediction and Performance in Rock Mechanics and Rock Engineering. Torino, Italy, SGEditoriali, Padova, 89–111.

  • D. Boerner B. Milkereit A. Davidson (2000) ArticleTitleGeoscience impact: a synthesis of studies of the Sudbury Structure Can. J. Earth Sci. 37 477–501 Occurrence Handle10.1139/cjes-37-2-3-477

    Article  Google Scholar 

  • S. Brocoum I. Dalziel (1974) ArticleTitleThe Sudbury Basin, the Southern Province, the Grenville Front, and the Penokean Orogeny Geol. Soc. Am. Bull. 85 1571–1580 Occurrence Handle10.1130/0016-7606(1974)85<1571:TSBTSP>2.0.CO;2

    Article  Google Scholar 

  • R. Burridge L. Knopoff (1967) ArticleTitleModel and theoretical seismicity Bull. Seis. Soc Am 57 341–371

    Google Scholar 

  • CAMIRO (1997): Canadian Rockburst Research Program 1990–95, vol. 1 and 2, CAMIRO Mining Division, Sudbury.

  • R. Christiansson T. Janson (2003) ArticleTitleA test of different stress measurement methods in two orthogonal bore holes in Aspo Hard Rock Laboratory (HRL), Sweden Int. J. Rock Mech. Min. Sci. 40 1161–1172 Occurrence Handle10.1016/j.ijrmms.2003.07.006

    Article  Google Scholar 

  • Cochrane, L. (1989): Analysis of the structural and tectonic environments associated with rock-mass failures in the mines of the Sudbury district. Ph.D. thesis, Department of Geological Sciences, Queen’s University.

  • C. Connors T. Urbancic W. Bawden R. Young (1993) ArticleTitleConstraining numerical models with geomechanical data and microseismic fault-plane solutions Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30 IssueID7 1371–1378 Occurrence Handle10.1016/0148-9062(93)90124-V

    Article  Google Scholar 

  • F. Cuisiat B. Haimson (1992) ArticleTitleScale effects in rock mass stress measurements Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 29 99–117 Occurrence Handle10.1016/0148-9062(92)92121-R

    Article  Google Scholar 

  • P. Cundall (1989) ArticleTitleNumerical experiments on localization in frictional materials Ingenieur-Archiv 59 148–159 Occurrence Handle10.1007/BF00538368

    Article  Google Scholar 

  • P. Cundall (1990) Numerical modelling of jointed and faulted rock H. Rosmanith (Eds) Mechanics of jointed and faulted rock Balkema Rotterdam 11–18

    Google Scholar 

  • R. Deitz (1964) ArticleTitleThe Sudbury Structure as an astrobleme J. Geol. 72 412–434 Occurrence Handle10.1086/626999

    Article  Google Scholar 

  • Galbraith, J. (2002): Inco Ltd. Stress measurement data, unpublished.

  • Gay, N., Spencer, D., van Wyk, J., van der Heever, P. (1984): The control of geological and mining parameters in the Klerksdorp gold mining district. In: Gay, N., Wainwright, E. (eds), The First International Symposium on Rockbursts and Seismicity in Mines, The South African Institute of Mining and Metallurgy, 107–120.

  • J. Gephart (1990) ArticleTitleStress and the direction of slip on fault planes Tectonics 4 845–858

    Google Scholar 

  • J. Gephart D. Forsyth (1984) ArticleTitleAn improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence J. Geophys. Res. 89 9305–9320

    Google Scholar 

  • J.-R. Grasso D. Sornette (1998) ArticleTitleTesting self-organized criticality by induced seismicity J. Geophys. Res. 103 IssueIDB12 12,965–29,987 Occurrence Handle10.1029/97JB01344

    Article  Google Scholar 

  • B. Gutenberg C. Richter (1954) Seismicity of the earth and associated phenomena Princeton University Press Princeton

    Google Scholar 

  • B. Haimson T. Doe (1983) ArticleTitleState of stress, permeability, and fractures in the Precambrian Granite of Northern Illinois J. Geophys. Res. 88 IssueIDB9 7355–7371

    Google Scholar 

  • Hanekom, J. (2001): Correlating actual seismic activity and elastic code computer simulation. In: Van Aswegen, G., Ortlepp, D., Durrheim R. (eds), The Fifth International Symposium on Rockburst and Seismicity in Mines, South African Institute of Mining and Metallurgy, 301–308.

  • B. Hobbs A. Ord (1989) ArticleTitleNumerical simulation of shear band formation in a frictional dilatant material Ingenieur-Archiv 59 209–220 Occurrence Handle10.1007/BF00532251

    Article  Google Scholar 

  • Hyett, A., Dyke, C., Hudson, J. (1986): A critical examination of basic concepts associated with the existence and measurement of in situ stress. In: Stephansson, O. (ed), Proc., International Symposium on Rock Stress and Rock Stress Measurements.

  • Itasca Consulting Group Inc. (2002): FLAC (Fast Lagrangian Analysis of Continua), version 4.0, Minneapolis, Minnesota.

  • Laverdure, L. (2005): Personal communication.

  • J. Martinez-Diaz (2002) ArticleTitleStress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain Tectonophysics 356 291–305 Occurrence Handle10.1016/S0040-1951(02)00400-6

    Article  Google Scholar 

  • C. Martin N. Chandler (1993) ArticleTitleStress heterogeneity and geological structures Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30 993–999 Occurrence Handle10.1016/0148-9062(93)90059-M

    Article  Google Scholar 

  • S. McKinnon I. Garrido de la Barra (1998) ArticleTitleFracture initiation, growth and effect on stress field: a numerical investigation J. Struct. Geol. 20 IssueID12 1673–1689 Occurrence Handle10.1016/S0191-8141(98)00080-7

    Article  Google Scholar 

  • C. Pascal R. Gabrielsen (2001) ArticleTitleNumerical modeling of Cenozoic stress patterns in the mid-Norwegian margin and the northern North Sea Tectonics 20 IssueID4 585–599 Occurrence Handle10.1029/2001TC900007

    Article  Google Scholar 

  • Pelletier, J. (2000): Spring-block models of seismicity: Review and analysis of a structurally heterogeneous model coupled to a viscous asthenosphere. In: Rundle, J., Turcotte, D., Klein, W. (eds), Geocomplexity and the physics of earthquakes. American Geophysical Union.

  • A. Poliakov H. Herrmann (1994) ArticleTitleSelf-organized criticality of plastic shear bands in rocks Geophys. Res. Lett. 21 IssueID19 2143–2146 Occurrence Handle10.1029/94GL02005

    Article  Google Scholar 

  • Potvin, Y., Hudyma, M. (2001): Seismic monitoring in highly mechanized hardrock mines in Canada and Australia. In: Van Aswegen, G., Ortlepp, D., Durrheim R. (eds), The Fifth International Symposium on Rockburst and Seismicity in Mines, South African Institute of Mining and Metallurgy, 267–280.

  • S. Rebaï H. Philip A. Taboada (1992) ArticleTitleModern tectonic stress-field in the Mediterranean region – evidence for variation in stress directions at different scales Geophys. J. Int. 110 IssueID1 106–140

    Google Scholar 

  • D. Rousell H. Gibson I. Jonasson (1997) ArticleTitleThe tectonic, magmatic and mineralization history of the Sudbury Structure Expl. Min. Geol. 6 IssueID1 1–22

    Google Scholar 

  • Ryder, J. (1987): Excess shear stress (ESS): An engineering criterion for assessing unstable slip and associated rockburst hazards. In: Proc. 6th Int. Cong. Rock Mech. (Montreal), vol. 2, A.A. Balkema, Rotterdam, 1211–1215.

  • C. Scholz (2002) The mechanics of earthquakes and faulting Cambridge University Press Cambridge

    Google Scholar 

  • W. Shanks W. Schwerdtner (1991) ArticleTitleStructural analysis of the central and southwestern Sudbury Structure, Southern Province, Canadian Shield Can. J. Earth Sci. 28 411–430 Occurrence Handle10.1139/e91-037

    Article  Google Scholar 

  • R. Smith P. Winkler J. Anderson C. Scholz (1974) ArticleTitleSource mechanisms of microearthquakes associated with underground mines in eastern Utah Bull. Seis. Soc. Am. 64 1295–1317

    Google Scholar 

  • O. Stephansson E. Brown (1988) Rock stress and rock stress measurements – a review A. Kidybinski M. Kwasniewski (Eds) Modelling of mine structures Balkema Rotterdam 3–15

    Google Scholar 

  • T. Urbancic C. Trifu (1998) ArticleTitleShear zone stress release heterogeneity associated with two mining-induced events of m 1.7 and 2.2 Tectonophysics 289 75–89 Occurrence Handle10.1016/S0040-1951(97)00308-9

    Article  Google Scholar 

  • T. Urbancic C. Trifu R. Young (1993) ArticleTitleMicroseismicity derived fault-planes and their relationship to focal mechanism, stress inversion, and geologic data Geophys. Res. Lett. 20 IssueID22 2475–2478

    Google Scholar 

  • Wiles, T., Lachenicht, R., Van Aswagen, G. (2001): Integration of deterministic modelling with seismic monitoring for the assessment of rockmass response to mining: Part 1 Theory. In: Van Aswegen, G., Ortlepp, D., Durrheim R. (eds), The Fifth International Symposium on Rockburst and Seismicity in Mines, South African Institute of Mining and Metallurgy, 379–387.

  • I. Wong (1993) >Tectonic stresses in mine seismicity: Are they significant? R. Young (Eds) et al. The Third International Symposium on Rockbursts and Seismicity in Mines Balkema Rotterdam 273–278

    Google Scholar 

  • M. Zoback (1992a) ArticleTitleFirst- and second-order patterns of stress in the lithosphere: The World Stress Map Project J. Geophys. Res. 97 IssueIDB6 11703–11728

    Google Scholar 

  • M. Zoback (1992b) ArticleTitleStress field constraints on intraplate seismicity in eastern North America J. Geophys. Res. 97 IssueIDB8 11761–11782

    Google Scholar 

  • M. Zoback M. Zoback (1980) ArticleTitleState of stress in the counterminous United States J. Geophys. Res. 85 IssueIDB11 6113–6156 Occurrence Handle10.1029/JB085iB11p06113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinnon, S. Triggering of Seismicity Remote from Active Mining Excavations. Rock Mech. Rock Engng. 39, 255–279 (2006). https://doi.org/10.1007/s00603-005-0072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-005-0072-5

Navigation