Skip to main content
Log in

A Nuclear Model with Explicit Mesons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A nuclear model is proposed where the nucleons interact by emitting and absorbing mesons, and where the mesons are treated explicitly. A nucleus in this model finds itself in a quantum superposition of states with different number of mesons. Transitions between these states hold the nucleus together. The model—in its simplest incarnation—is applied to the deuteron, where the latter becomes a superposition of a neutron-proton state and a neutron-proton-meson state. Coupling between these states leads to an effective attraction between the nucleons and results in a bound state with negative energy, the deuteron. The model is able to reproduce the accepted values for the binding energy and the charge radius of the deuteron. The model, should it work in practice, has several potential advantages over the existing non-relativistic few-body nuclear models: the reduced number of model parameters, natural inclusion of few-body forces, and natural inclusion of mesonic physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Which follows from the identity (with implicit summation notation),

    $$\begin{aligned} \frac{\partial }{\partial \mathbf {r}_i} K_{ij} \frac{\partial }{\partial \mathbf {r}_j} = \frac{\partial }{\partial \mathbf {x}_k} \frac{\partial \mathbf {x}_k}{\partial \mathbf {r}_i} K_{ij} \frac{\partial }{\partial \mathbf {x}_l} \frac{\partial \mathbf {x}_l}{\partial \mathbf {r}_j} = \frac{\partial }{\partial \mathbf {x}_k} J_{ki}K_{ij}J_{lj} \frac{\partial }{\partial \mathbf {x}_l}. \end{aligned}$$
    (40)
  2. Which follows from the identity

    $$\begin{aligned} w_i^\mathrm {T}\mathbf {r} = w_i^\mathrm {T}U\mathbf {x} = (U^\mathrm {T}w_i)^\mathrm {T}\mathbf {x}. \end{aligned}$$
    (43)

References

  1. H. Yukawa, On the interaction of elementary particles. Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    MATH  Google Scholar 

  2. P.J. Siemens, A.S. Jensen, Elements of Nuclei: Many-Body Physics with the Strong Interaction (Addison-Wesley, Boston, 1987)

    Google Scholar 

  3. R. Machleidt, One-boson-exchange potentials and nucleon-nucleon scattering, in Computational Nuclear Physics 2 Nuclear Reactions, ed. by K. Langanke, J.A. Maruhn, S.E. Koonin (Springer, Berlin, 1993), pp. 1–29

    Google Scholar 

  4. R. Machleid, K. Holinde, Ch. Elster, The Bonn meson-exchange model for the nucleon-nucleon interaction. Phys. Rep. 149(1), 1–89 (1987)

    Article  ADS  Google Scholar 

  5. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51(1), 38 (1995). arXiv:nucl-th/9408016

    Article  ADS  Google Scholar 

  6. R. Machleidt, Historical perspective and future prospects for nuclear interactions. Int. J. Mod. Phys. E 26, 1730005 (2017). arXiv:1710.07215 [nucl-th]

    Article  ADS  Google Scholar 

  7. A. Krassnigg, W. Schweiger, W.H. Klink, Vector mesons in a relativistic point-form approach. Phys. Rev. C 67, 064003 (2003)

    Article  ADS  Google Scholar 

  8. L. Girlanda, M. Viviani, W.H. Klink, Bakamjian-thomas mass operator for few-nucleon systems from chiral dynamics. Phys. Rev. C 76, 044002 (2007)

    Article  ADS  Google Scholar 

  9. M. Albaladejo, J.A. Oller, Size of the meson and its nature. Phys. Rev. D 86, 034003 (2012). arXiv:1205.6606 [hep-ph]

    Article  ADS  Google Scholar 

  10. R. Manka, I. Bednarek, Nucleon and meson effective masses in the relativistic mean-field theory. J. Phys. G Nucl. Part. Phys. 27(10), 1975 (2001). arXiv:nucl-th/0011084v2

    Article  ADS  Google Scholar 

  11. Y. Suzuki, K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Berlin, 1998)

    MATH  Google Scholar 

  12. J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, K. Varga, Theory and application of explicitly correlated gaussians. Rev. Modern Phys. 85, 693 (2013)

    Article  ADS  Google Scholar 

  13. D.V. Fedorov, Analytic matrix elements and gradients with shifted correlated gaussians. Few Body Syst. 58(1), 21 (2017). arXiv:1702.06784 [nucl-th]

    Article  ADS  Google Scholar 

  14. D.V. Fedorov, A.S. Jensen, M. Thøgersen, E. Garrido, R. de Diego, Calculating few-body resonances using an oscillator trap. Few Body Syst. 45, 191–195 (2009). arXiv:0902.1110 [nucl-th]

    Article  ADS  Google Scholar 

  15. K. Fujimura, D. Baye, P. Descouvemont, Y. Suzuki, K. Varga, Low-energy \(\alpha +{}^6{{\rm He}}\) elastic scattering with the resonating-group method. Phys. Rev. C 59(2), 817 (1999)

    Article  ADS  Google Scholar 

  16. P.J. Mohr, D.B. Newell, B.N. Taylor. CODATA recommended values of the fundamental physical constants: (2014). arXiv:1507.07956 [physics.atom-ph]

  17. D.V. Fedorov, Correlated gaussians and low-discrepancy sequences. Few Body Syst. 60(3), 55 (2019). arXiv:1910.05223 [physics.comp-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Fedorov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Stochastic Sampling of Gaussian Parameters

The Gaussians can be parameterized in the form

$$\begin{aligned} \langle \mathbf {r}\bigm | A\rangle = \exp \left( -\sum _{i<j=1}^N\left( \frac{\mathbf {r}_i-\mathbf {r}_j}{b_{ij}}\right) ^2 \right) \equiv \exp \left( -\mathbf {r}^\mathrm {T} A \mathbf {r} \right) , \end{aligned}$$
(27)

where \(\mathbf {r}_i\) is the coordinate of the i-th particle and the matrix A is given as

$$\begin{aligned} A= \sum _{i<j=1}^n \frac{w_{ij}w_{ij}^\mathrm {T}}{b_{ij}^2}, \end{aligned}$$
(28)

where the column-vectors \(w_{ij}\) are defined through the equation

$$\begin{aligned} \mathbf {r}_i-\mathbf {r}_j=w_{ij}^\mathrm {T}\mathbf {r}. \end{aligned}$$
(29)

In the laboratory frame \(\mathbf {r}=\begin{pmatrix}\mathbf {r}_1&\mathbf {r}_2&\dots&\mathbf {r}_N\end{pmatrix}^\mathrm {T}\) and the \(w_{ij}\) are given for a two-body system as

$$\begin{aligned} w_{12}= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \;, \end{aligned}$$
(30)

and for a three-body system as

$$\begin{aligned} w_{12}= \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},\;\; w_{13}= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix},\;\; w_{23}= \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}. \end{aligned}$$
(31)

Under a coordinate transformation \(\mathbf {r}\rightarrow J\mathbf {r}\) the column-vectors \(w_{ij}\) transform as \(w_{ij}\rightarrow U^\mathrm {T}w_{ij}\) where \(U=J^{-1}\).

The range parameters \(b_{ij}\) of the Gaussians are chosen stochastically from the exponential distribution,

$$\begin{aligned} b_{ij}=-\ln (u)b, \end{aligned}$$
(32)

where the quasi-random number \(u\in ]0,1[\) is taken from a Van der Corput sequence [17] with the scale \(b=3\) fm. Separate sequences with different prime bases are used for each ij-combination.

1.2 Charge Radius

We define the charge radius, \(R_c\), of an N-body system as

$$\begin{aligned} R_c^2 = \sum _{i=1}^{N} Z_i\langle \mathbf {r}_i^2\rangle = \sum _{i=1}^{N} Z_i\langle \mathbf {r}^\mathrm {T}w_iw_i^\mathrm {T}\mathbf {r}\rangle , \end{aligned}$$
(33)

where the summation goes over the bodies in the system; \(Z_i\) is the charge of the body in unit charges; \(\mathbf {r}_i\) is the coordinate of the body (in the center-of-mass frame); the brackets \(\langle \rangle \) signify the expectation value in the given state of the system; and the column-vector \(w_i\) is defined via the formula

$$\begin{aligned} \mathbf {r}_i=w_i^{\mathrm T}\mathbf {r}. \end{aligned}$$
(34)

In the laboratory frame, for a two-body system

$$\begin{aligned} w_1=\begin{pmatrix} 1 \\ 0 \end{pmatrix}\;,\;\; w_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}\;,\;\; \end{aligned}$$
(35)

and for a three-body system

$$\begin{aligned} w_1= \left( \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) , w_2= \left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) , w_3= \left( \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) . \end{aligned}$$
(36)

Under a coordinate transformation \(\mathbf {r}\rightarrow J\mathbf {r}\) the column-vector \(w_i\) transforms with the inverse matrix \(U=J^{-1}\) as \(w_i\rightarrow U^{\mathrm T}w_i\) (see Sect. 6.3 for a transformation to the center-of-mass frame).

Now the matrix element in (33) between two Gaussians is given as [13],

$$\begin{aligned} \left\langle A\bigm | \mathbf {r}^\mathrm T w_iw_i^\mathrm T \mathbf {r} \bigm | A'\right\rangle = \frac{3}{2} w_i^\mathrm T(A+A')^{-1}w_i \left\langle A\bigm |A'\right\rangle . \end{aligned}$$
(37)

1.3 Coordinate Transformations

Under a linear coordinate transformation to a new set of coordinates,

$$\begin{aligned} \mathbf {r}\rightarrow \mathbf {x}=J\mathbf {r}, \end{aligned}$$
(38)

the matrix elements with correlated Gaussians preserve their mathematical form as long as the determinant of the transformation matrix J equals one (otherwise they have to be divided by the determinant), and as long as one makes the corresponding transformations of the related matrices and column-vectors: the kinetic energy matrix transforms asFootnote 1

$$\begin{aligned} K\rightarrow JKJ^\mathrm {T}, \end{aligned}$$
(42)

and the \(w_i\) (and \(w_{ij}\)) column-vectors transform asFootnote 2

$$\begin{aligned} w_i\rightarrow U^\mathrm {T}w_i, \end{aligned}$$
(39)

where \(U=J^{-1}\).

One practical set of coordinates are the Jacobi coordinates defined as

$$\begin{aligned} \mathbf {x}_{i<N} = \frac{\sum _{k=1}^i m_k\mathbf {r}_k}{\sum _{k=1}^i m_k}-\mathbf {r}_{i+1}\;,\; \mathbf {x}_N = \frac{\sum _{k=1}^N m_k\mathbf {r}_k}{\sum _{k=1}^N m_k}\;, \end{aligned}$$
(41)

where the last coordinate, \(\mathbf {x}_N\), is the center-of-mass coordinate that can be omitted if no external forces are acting on the system. This is equivalent to simply discarding the last row of the J matrix and the last column of the U matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, D.V. A Nuclear Model with Explicit Mesons. Few-Body Syst 61, 40 (2020). https://doi.org/10.1007/s00601-020-01573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01573-1

Navigation