Skip to main content
Log in

Benchmark Calculation of Radial Expectation Value \(\varvec{\langle r^{-2} \rangle }\) for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillators

  • Published:
Few-Body Systems Aims and scope Submit manuscript

An Erratum to this article was published on 31 August 2017

This article has been updated

Abstract

Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of \(\langle r^{-2} \rangle \) which is of practical importance in many applications has significant discrepancies among calculations by different methods. In this work we employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for \(\langle r^{n} \rangle \) was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 31 August 2017

    An erratum to this article has been published.

References

  1. A. Michels, J. De Boer, A. Bijl, Remarks concerning molecural interaction and their influence on the polarisability. Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  2. W. Jaskólski, Confined many-electron systems. Phys. Rep. 271, 1 (1996)

    Article  ADS  Google Scholar 

  3. A.L. Buchachenko, Compressed atoms. J. Phys. Chem. B 105, 5839 (2001)

    Article  Google Scholar 

  4. V.K. Dolmatov, A.S. Baltenkov, J.P. Connerade, S.T. Manson, Structure and photoionization of confined atoms. Radiat. Phys. Chem. 70, 417 (2004)

    Article  ADS  Google Scholar 

  5. J.R. Sabin, E. Brändas, S.A. Cruz (eds.), Advances in Quantum Chemistry: Theory of Confined Quantum Systems, vol. 57, 58 (Academic Press, New York, 2009)

    Google Scholar 

  6. K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules (Springer, Cham, 2014)

    MATH  Google Scholar 

  7. T. Guillot, A comparison of the interiors of jupiter and saturn. Plan. Space Sci. 47, 1183 (1999)

    Article  ADS  Google Scholar 

  8. B. Saha, P.K. Mukherjee, G.H.F. Diercksen, Energy levels and structural properties of compressed hydrogen atom under debye screening. Astron. Astrophys. 396, 337 (2002)

    Article  ADS  Google Scholar 

  9. D.S. Chuu, C.M. Hsiao, W.N. Mei, Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B 46, 3898 (1992)

    Article  ADS  Google Scholar 

  10. N. Porras-Montenegro, S.T. Pérez-Merchancano, Hydrogenic impurities in GaAs-(Ga, Al)As quantum dots. Phys. Rev. B 46, 9780 (1992)

    Article  ADS  Google Scholar 

  11. I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23 (2005)

    Article  Google Scholar 

  12. B. Sun, D.L. Zhou, L. You, Entanglement between two interacting atoms in a one-dimensional harmonic trap. Phys. Rev. A 73, 012336 (2006)

    Article  ADS  Google Scholar 

  13. F.M. Fernández, E.A. Castro, Hypervirial treatment of multidimensional isotropic bounded oscillators. Phys. Rev. A 24, 2883 (1981)

    Article  ADS  Google Scholar 

  14. H.E. Montgomery, G. Campoy, N. Aquino, The confined n-dimensional harmonic oscillator revisited. Phys. Scr. 81, 045010 (2010)

    Article  ADS  MATH  Google Scholar 

  15. J.L. Marin, S.A. Cruz, On the use of direct variational methods to study confined quantum systems. Am. J. Phys. 59, 931 (1991)

    Article  ADS  Google Scholar 

  16. V.C. Aguilera-Navarro, J.F. Gomes, A.H. Zimerman, K. Ley-Koo, On the radius of convergence of rayleigh-schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes. J. Phys. A: Math. Gen. 16, 2943 (1983)

    Article  ADS  Google Scholar 

  17. F.A. Serrano, S.H. Dong, Proper quantization rule approach to three-dimensional quantum dots. Int. J. Quantum Chem. 113, 2282 (2013)

    Article  Google Scholar 

  18. N. Aquino, The isotropic bounded oscillators. J. Phys. A: Math. Gen. 30, 2403 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. N. Aquino, G. Campoy, H.E. Montgomery, Highly accurate solutions for the confined hydrogen atom. Int. J. Quantum Chem. 107, 1548 (2007)

    Article  ADS  Google Scholar 

  20. N. Aquino, R.A. Rojas, The confined hydrogen atom: a linear variational approach. Eur. J. Phys. 37, 015401 (2016)

    Article  MATH  Google Scholar 

  21. S. Goldman, C. Joslin, Spectroscopic properties of an isotropically compressed hydrogen atom. J. Phys. Chem. 96, 6021 (1992)

    Article  Google Scholar 

  22. E.D. Filho, R.M. Ricotta, Supersymmetric variational energies for the confined coulomb system. Phys. Lett. A 299, 137 (2002)

    Article  ADS  MATH  Google Scholar 

  23. C. Laughlin, B.L. Burrows, M. Cohen, A hydrogen-like atom confined within an impenetrable spherical box. J. Phys. B: At. Mol. Opt. Phys. 35, 701 (2002)

    Article  ADS  Google Scholar 

  24. B.L. Burrows, M. Cohen, Exact solutions for perturbed confined hydrogen atoms: Polarizabilities and nuclear shielding factors. Phys. Rev. A 72, 032508 (2005)

    Article  ADS  Google Scholar 

  25. K.D. Sen, A.K. Roy, Studies on the 3d confined potentials using generalized pseudospectral approach. Phys. Lett. A 357, 112 (2006)

    Article  ADS  Google Scholar 

  26. A.K. Roy, Confinement in 3d polynomial oscillators through a generalized pseudospectral method. Mod. Phys. Lett. A 29, 1450104 (2014)

    Article  ADS  Google Scholar 

  27. A.K. Roy, Spherical confinement of coulombic systems inside an impenetrable box: H atom and the hulthén potential. Int. J. Quantum Chem. 115, 937 (2015)

    Article  Google Scholar 

  28. L. Stevanović, Oscillator strengths of the transitions in a spherically confined hydrogen atom. J. Phys. B: At. Mol. Opt. Phys. 43, 165002 (2010)

    Article  ADS  Google Scholar 

  29. R. Cabrera-Trujillo, S.A. Cruz, Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen. Phys. Rev. A 87, 012502 (2013)

    Article  ADS  Google Scholar 

  30. J.G. Kirkwood, Polarizabilities, susceptibilities and van der waals forces of atoms with several electrons. Phys. Z 33, 57 (1932)

    Google Scholar 

  31. R.A. Buckingham, Quantum theory of atomic polarization. I. Polarization by a uniform field. Proc. R. Soc. Lond. Ser. A 160, 94 (1937)

    Article  ADS  MATH  Google Scholar 

  32. D. Suryanarayana, J.A. Weil, On the hyperfine splitting of the hydrogen atom in a spherical box. J. Chem. Phys. 64, 510 (1976)

    Article  ADS  Google Scholar 

  33. E. LeyKoo, S. Rubinstein, The hydrogen atom within spherical boxes with penetrable walls. J. Chem. Phys. 71, 351 (1979)

    Article  ADS  Google Scholar 

  34. N. Aquino, Accurate energy eigenvalues for enclosed hydrogen atom within spheric a1 impenetrable boxes. Int. J. Quantum Chem. 54, 107 (1995)

    Article  Google Scholar 

  35. J.S. Dehesa, S. López-Rosa, B. Olmos, R.J. Yáñez, Information measures of hydrogenic systems, laguerre polynomials and spherical harmonics. J. Comput. Appl. Math. 179, 185 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J.S. Dehesa, S. López-Rosa, A. Martínez-Finkelshtein, R.J. Yáñez, Information theory of D-dimensional hydrogenic systems: application to circular and rydberg states. Int. J. Quantum Chem. 110, 1529 (2010)

    Google Scholar 

  37. L.G. Jiao, L.R. Zan, Y.Z. Zhang, Y.K. Ho, Benchmark values of shannon entropy for spherically confined hydrogen atom. Int. J. Quantum Chem. 117, e25375 (2017)

    Article  Google Scholar 

  38. E. Romera, P. Sánchez-Moreno, J.S. Dehesa, The fisher information of single-particle systems with a central potential. Chem. Phys. Lett. 414, 468 (2005)

    Article  ADS  Google Scholar 

  39. N. Aquino, A. Flores-Riveros, J.F. Rivas-Silva, Shannon and fisher entropies for a hydrogen atom under soft spherical confinement. Phys. Lett. A 377, 2062 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. D.H. Bailey, Y. Hida, K. Jeyabalan, X.S. Li, B. Thompson, A. Kaiser. An Arbitrary Precision Computation Package. (2002)

  41. P.-O. Löwdin, On the nonorthogonality problem. Adv. Quantum. Chem. 5, 185 (1970)

    Article  ADS  Google Scholar 

  42. L.G. Jiao, Y.K. Ho, Application of Löwdin’s canonical orthogonalization method to the slater-type orbital configuration-interaction basis set. Int. J. Quantum Chem. 115, 434 (2015)

    Article  Google Scholar 

  43. S.H. Patil, K.D. Sen, N.A. Watson, H.E. Montgomery, Characteristic features of net information measures for constrained coulomb potentials. J. Phys. B: At. Mol. Opt. Phys. 40, 2147 (2007)

    Article  ADS  Google Scholar 

  44. S.H. Patil, K.D. Sen, Scaling properties of net information measures for superpositions of power potentials: free and spherically confined cases. Phys. Lett. A 370, 354 (2007)

    Article  ADS  Google Scholar 

  45. A.K. Roy, Calculation of the spiked harmonic oscillators through a generalized pseudospectral method. Phys. Lett. A 321, 231 (2004)

    Article  ADS  MATH  Google Scholar 

  46. A.K. Roy, Studies on the bound-state spectrum of hyperbolic potential. Few-Body Syst. 55, 143 (2014)

    Article  ADS  Google Scholar 

  47. A.K. Roy, Critical parameters and spherical confinement of h atom in screened coulomb potential. Int. J. Quantum Chem. 116, 953 (2016)

    Article  Google Scholar 

  48. K.D. Sen, Characteristic features of shannon information entropy of confined atoms. J. Chem. Phys. 123, 074110 (2005)

    Article  ADS  Google Scholar 

  49. S. López-Rosa, I.V. Toranzo, P. Sánchez-Moreno, J.S. Dehesa, Entropy and complexity analysis of hydrogenic rydberg atoms. J. Math. Phys. 54, 052109 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. K.D. Sen (ed.), Statistical Complexity: Applications in Electronic Structure (Springer, Berlin, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guang Jiao.

Additional information

The original version of this article was revised: The table head of Table 6 was incorrectly published in the original article and the same is corrected here.

An erratum to this article is available at https://doi.org/10.1007/s00601-017-1316-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R.M., Zan, L.R., Jiao, L.G. et al. Benchmark Calculation of Radial Expectation Value \(\varvec{\langle r^{-2} \rangle }\) for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillators. Few-Body Syst 58, 152 (2017). https://doi.org/10.1007/s00601-017-1314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1314-2

Navigation