Skip to main content
Log in

Fucosylation is associated with the malignant transformation of intraductal papillary mucinous neoplasms: a lectin microarray-based study

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Intraductal papillary mucinous neoplasm (IPMN) is an intraductal mucin-producing pancreatic neoplasm with the potential for malignant transformation. Changes in glycans expressed on the cell surface and glycotransferases play important roles in malignant transformation. We conducted this study to analyze glycan alterations in IPMNs by using a lectin microarray and to identify the factors associated with altered glycans and their relationships with malignant transformation.

Methods

Using a lectin microarray, we evaluated glycan expression in 22 samples of IPMN with carcinoma, obtained from curative resections performed in our department. We also used immunohistochemistry to investigate fucosyltransferase 8 (Fut 8) protein expression, which is associated with glycan alterations in IPMNs.

Results

The lectin microarray demonstrated that only two lectins, Aleuria aurantia lectin (AAL) and Aspergillus oryzae l-fucose-specific lectin (AOL), which bind to fucose, exhibited significant sequential increases from normal pancreatic duct to adenoma and carcinoma. Similarly, Fut 8 protein expression, which is associated with AAL and AOL, sequentially and significantly increased from the normal pancreatic duct to adenoma and carcinoma.

Conclusions

Lectin microarray analysis suggested that fucosylation is associated with the malignant transformation of IPMNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gardner TB, Glass LM, Smith KD, Ripple GH, Barth RJ, Klibansky DA, et al. Pancreatic cyst prevalence and the risk of mucin-producing adenocarcinoma in US adults. Am J Gastroenterol. 2013;108:1546–50.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S, et al. Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol. 2008;191:802–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee KS, Sekhar A, Rofsky NM, Pedrosa I. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. Am J Gastroenterol. 2010;105:2079–84.

    Article  PubMed  Google Scholar 

  4. Tanaka M, Fernández-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, International Association of Pancreatology, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.

    Article  PubMed  Google Scholar 

  5. Anand N, Sampath K, Wu BU. Cyst features and risk of malignancy in intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis. Clin Gastroenterol Hepatol. 2013;11:913–21.

    Article  PubMed  Google Scholar 

  6. Tian X, Gao H, Ma Y, Zhuang Y, Yang Y. Surgical treatment and prognosis of 96 cases of intraductal papillary mucinous neoplasms of the pancreas: a retrospective cohort study. Int J Surg. 2015;13:49–53.

    Article  PubMed  Google Scholar 

  7. Yonezawa S, Higashi M, Yamada N, Yokoyama S, Goto M. Significance of mucin expression in pancreatobiliary neoplasms. J Hepatobiliary Pancreat Sci. 2010;17:108–24.

    Article  PubMed  Google Scholar 

  8. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods. 2005;2:851–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev. 2013;42:4443–58.

    Article  CAS  PubMed  Google Scholar 

  10. Nakajima K, Inomata M, Iha H, Hiratsuka T, Etoh T, Shiraishi N, et al. Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis. Cancer Med. 2015;4:293–302.

    Article  CAS  PubMed  Google Scholar 

  11. Futsukaichi T, Etoh T, Nakajima K, Daa T, Shiroshita H, Shiraishi N, et al. Decreased expression of Bauhinia purpurea lectin is a predictor of gastric cancer recurrence. Surg Today. 2015 (Epub ahead of print).

  12. Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, et al. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology. 2014;24:935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen CY, Jan YH, Juan YH, Yang CJ, Huang MS, Yu CJ, et al. Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proc Natl Acad Sci USA. 2013;110:630–5.

    Article  CAS  PubMed  Google Scholar 

  14. Tu Z, Lin YN, Lin CH. Development of fucosyltransferase and fucosidase inhibitors. Chem Soc Rev. 2013;42:4459–75.

    Article  CAS  PubMed  Google Scholar 

  15. Matsumura K, Higashida K, Ishida H, Hata Y, Yamamoto K, Shigeta M, et al. Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J Biol Chem. 2007;282:15700–8.

    Article  CAS  PubMed  Google Scholar 

  16. Maupin KA, Liden D, Haab BB. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data. Glycobiology. 2012;22:160–9.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, et al. Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci USA. 2005;102:15791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baumann H, Nudelman E, Watanabe K, Hakomori S. Neutral fucolipids and fucogangliosides of rat hepatoma HTC and H35cells, rat liver, and hepatocytes. Cancer Res. 1979;39(7 Pt 1):2637–43.

    CAS  PubMed  Google Scholar 

  19. Mas E, Pasqualini E, Caillol N, El Battari A, Crotte C, Lombardo D, et al. Fucosyltransferase activities in human pancreatic tissue: comparative study between cancer tissues and established tumoral cell lines. Glycobiology. 1998;8:605–13.

    Article  CAS  PubMed  Google Scholar 

  20. Terao N, Takamatsu S, Minehira T, Sobajima T, Nakayama K, Kamada Y, et al. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes. World J Gastroenterol. 2015;21:3876–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinez-Duncker I, Michalski JC, Bauvy C, Candelier JJ, Mennesson B, Codogno P, et al. Activity and tissue distribution of splice variants of alpha6-fucosyltransferase in human embryogenesis. Glycobiology. 2004;14:13–25.

    Article  CAS  PubMed  Google Scholar 

  22. Geng F, Shi BZ, Yuan YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res. 2004;14:423–33.

    Article  CAS  PubMed  Google Scholar 

  23. Izumi H, Hirabayashi K, Nakamura N, Nakagohri T. Nectin expression in pancreatic adenocarcinoma: nectin-3 is associated with a poor prognosis. Surg Today. 2015;45:487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moris M, Raimondo M, Woodward TA, Skinner V, Arcidiacono PG, Petrone MCA, et al. Risk factors for malignant progression of intraductal papillary mucinous neoplasms. Dig Liver Dis. 2015;47:495–501.

    Article  PubMed  Google Scholar 

  25. Jun DY, Kwon HJ, Kim SG, Kim SH, Chun JM, Kwon YB, et al. Predictive factors for invasive intraductal papillary mucinous neoplasm of the pancreas. Korean J Hepatobiliary Pancreat Surg. 2011;15:237–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Muinelo-Romay L, Vázquez-Martín C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Expression and enzyme activity of alpha (1,6) fucosyltransferase in human colorectal cancer. Int J Cancer. 2008;123:641–6.

    Article  CAS  PubMed  Google Scholar 

  27. Muinelo-Romay L, Villar-Portela S, Cuevas Alvarez E, Gil-Martín E, Fernández-Briera A. α(1,6) Fucosyltransferase expression is an independent prognostic factor for disease-free survival in colorectal carcinoma. Hum Pathol. 2011;42:1740–50.

    Article  CAS  PubMed  Google Scholar 

  28. Bernardi C, Soffientini U, Piacente F, Tonetti MG. Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS One. 2013;8:e76540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang M, Wang J, Kong X, Chen H, Wang Y, Qin M, et al. MiR-198 represses tumor growth and metastasis in colorectal cancer by targeting fucosyl transferase 8. Sci Rep. 2014;4:6145.

    Article  CAS  PubMed  Google Scholar 

  30. Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer. 2006;118:2803–8.

    Article  CAS  PubMed  Google Scholar 

  31. Park SY, Yoon SJ, Jeong YT, Kim JM, Kim JY, Bernert B, et al. N-glycosylation status of beta-haptoglobin in sera of patients with colon cancer, chronic inflammatory diseases and normal subjects. Int J Cancer. 2010;126:142–55.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu J, Lin Z, Wu J, Yin H, Dai J, Feng Z, et al. Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. J Proteome Res. 2014;13:2986–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mann BF, Goetz JA, House MG, Schmidt CM, Novotny MV. Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N-linked glycans of overexpressed glycoproteins. Mol Cell Proteom. 2012;11(M111):015792.

    Google Scholar 

  34. Corfield AP, Myerscough N, Warren BF, Durdey P, Paraskeva C, Schauer R. Reduction of sialic acid O-acetylation in human colonic mucins in the adenoma-carcinoma sequence. Glycoconj J. 1999;16:307–17.

    Article  CAS  PubMed  Google Scholar 

  35. Pérez-Garay M, Arteta B, Llop E, Cobler L, Pagès L, Ortiz R, et al. α2, 3-Sialyltransferase ST3Gal IV promotes migration and metastasis in pancreatic adenocarcinoma cells and tends to be highly expressed in pancreatic adenocarcinoma tissues. Int J Biochem Cell Biol. 2013;45:1748–57.

    Article  PubMed  Google Scholar 

  36. Schuessler MH, Pintado S, Welt S, Real FX, Xu M, Melamed MR, et al. Blood group and blood-group-related antigens in normal pancreas and pancreas cancer: enhanced expression of precursor type 1, Tn and sialyl-Tn in pancreas cancer. Int J Cancer. 1991;47:180–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Mayumi Takeda, Yuiko Aso, and Hiroko Taguchi for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiminori Watanabe.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest and that no sources of funding or material support were provided for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, K., Ohta, M., Yada, K. et al. Fucosylation is associated with the malignant transformation of intraductal papillary mucinous neoplasms: a lectin microarray-based study. Surg Today 46, 1217–1223 (2016). https://doi.org/10.1007/s00595-015-1299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-015-1299-8

Keywords

Navigation