Skip to main content

Advertisement

Log in

Perioperative nutritional therapy in liver transplantation

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Protein-energy malnutrition is frequently seen in patients with end-stage liver disease who undergo liver transplantation. This causes a deterioration of the patients’ clinical condition and affects their post-transplantation survival. Accurate assessment of the nutritional status and adequate intervention are prerequisites for perioperative nutritional treatment. However, the metabolic abnormalities induced by liver failure make the traditional assessment of the nutritional status difficult. The methods that were recently developed for accurately assessing the nutritional status by body bioelectrical impedance may be implemented in pre-transplant management. Because preoperative malnutrition and the loss of skeletal muscle mass, called sarcopenia, have a significant negative impact on the post-transplantation outcome, it is essential to provide adequate nutritional support during all phases of liver transplantation. Oral nutrition is preferred, but tube enteral nutrition may be required to provide the necessary caloric intake. We herein discuss both bioelectrical impedance and the latest findings in the current perioperative nutritional interventions in liver transplant patients regarding synbiotics, micronutrients, branched-chain amino acid supplementation, the use of immune system modulating formulas, the fluid balance and the offering of nocturnal meals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dudrick SJ, Kavic SM. Hepatobiliary nutrition: history and future. J Hepatobiliary Pancreat Surg. 2002;9:459–68.

    PubMed  Google Scholar 

  2. Cabre E, Gassull MA. Nutrition in liver disease. Curr Opin Clin Nutr Metab Care. 2005;8:545–51.

    PubMed  Google Scholar 

  3. O’Brien A, Williams R. Nutrition in end-stage liver disease: principles and practice. Gastroenterology. 2008;134:1729–40.

    PubMed  Google Scholar 

  4. Mendenhall CL, Moritz TE, Roselle GA, Morgan TR, Nemchausky BA, Tamburro CH, et al. A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs cooperative Study. Hepatology. 1993;17:564–76.

    CAS  PubMed  Google Scholar 

  5. Merli M, Giusto M, Gentili F, Novelli G, Ferretti G, Riggio O, et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int. 2010;30:208–14.

    CAS  PubMed  Google Scholar 

  6. Stephenson GR, Moretti EW, El-Moalem H, Clavien PA, Tuttle-Newhall JE. Malnutrition in liver transplant patients: preoperative subjective global assessment is predictive of outcome after liver transplantation. Transplantation. 2001;72:666–70.

    CAS  PubMed  Google Scholar 

  7. Kaido T, Mori A, Ogura Y, Ogawa K, Hata K, Yoshizawa A, et al. Pre and perioperative factors affecting infection after living donor liver transplantation. Nutrition. 2012;28:1104–8.

    PubMed  Google Scholar 

  8. Iida T, Kaido T, Yagi S, Yoshizawa A, Hata K, Mizumoto M, et al. Posttransplant bacteremia in adult living donor liver transplant recipients. Liver Transpl. 2010;16:1379–85.

    PubMed  Google Scholar 

  9. Durczynski A, Strzelczyk J, Wojciechowska-Durczynska K, Borkowska A, Hogendorf P, Szymanski D, et al. Major liver resection results in early exacerbation of insulin resistance, and may be a risk factor of developing overt diabetes in the future. Surg Today. 2013;43:534–8.

    PubMed Central  PubMed  Google Scholar 

  10. Kaido T, Ogawa K, Fujimoto Y, Ogura Y, Hata K, Ito T, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013;13:1549–56.

    CAS  PubMed  Google Scholar 

  11. Kaido T, Mori A, Ogura Y, Hata K, Yoshizawa A, Lida A, et al. Impact of enteral nutrition using a new immuno-modulating diet after liver transplantation. Hepatogastroenterology. 2010;57:1522–5.

    CAS  PubMed  Google Scholar 

  12. Kaido T, Mori A, Oike F, Mizumoto M, Ogura Y, Hata K, et al. Impact of pretransplant nutritional status in patients undergoing liver transplantation. Hepatogastroenterology. 2010;57:1489–92.

    PubMed  Google Scholar 

  13. Aranda-Michel J. Nutrition in hepatic failure and liver transplantation. Curr Gastroenterol Rep. 2001;3:362–70.

    CAS  PubMed  Google Scholar 

  14. Kamalaporn P, Sobhonslidsuk A, Jatchavala J, Atisook K, Rattanasiri S, Parmoolsinsap C. Factors predisposing to peptic ulcer disease in asymptomatic cirrhotic patients. Aliment Pharmacol Ther. 2005;21:1459–65.

    CAS  PubMed  Google Scholar 

  15. Madden AM, Bradbury W, Morgam MY. Taste perception in cirrhosis: its relationship to circulating micronutrients and food preferences. Hepatology. 1997;26:40–8.

    CAS  PubMed  Google Scholar 

  16. Thuluvath PJ, Triger DR. Autonomic neuropathy and chronic liver disease. Q J Med. 1989;72:737–47.

    CAS  PubMed  Google Scholar 

  17. Maheshwari A, Thuluvath PJ. Autonomic neuropathy may be associated with delayed orocaecal transit time in patients with cirrhosis. Auton Neurosci. 2005;118:135–9.

    PubMed  Google Scholar 

  18. Aqel BA, Scolapio JS, Dickson RC, Bruton DD, Bouras EP. Contribution of ascites to impaired gastric function and nutritional intake in patients with cirrhosis and ascites. Clin Gastroenterol Hepatol. 2005;3:1095–100.

    PubMed  Google Scholar 

  19. Muller MJ, Lautz HU, Plogmann B, Bürger M, Körber J, Schmidt FW. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state. Hepatology. 1992;15:782–94.

    CAS  PubMed  Google Scholar 

  20. Petrides AS, DeFronzo RA. Glucose metabolism in cirrhosis: a review with some perspective for the future. Diabetes Metab Rev. 1989;5:691–709.

    CAS  PubMed  Google Scholar 

  21. Stephen MR, Roger W. Nutrition and liver transplantation. Hepatology. 1999;31:955–62.

    Google Scholar 

  22. Stanley AJ, Gilmour HM, Ghosh S, Ferguson A, McGilchrist AJ. Transjugular intrahepatic portosystemic shunt as a treatment for protein-losing enteropathy caused by portal hypertension. Gastroenterology. 1996;111:1679–82.

    CAS  PubMed  Google Scholar 

  23. Thomas EL, Taylor-Robinson SD, Barnard ML, Frost G, Sargentoni J, Davidson BR, et al. Changes in adipose tissue composition in malnourished patients before and after liver transplantation: a carbon-13 magnetic resonance spectroscopy and gas liquid chromatography study. Hepatology. 1997;25:178–83.

    CAS  PubMed  Google Scholar 

  24. Cabre E, Abad-Lacruz A, Nunez MC, Gonzalez-Huix F, Fernandez-Banares F, Gil A, et al. The relationship of plasma polyunsaturated fatty acid deficiency with survival in advanced liver cirrhosis: multivariate analysis. Am J Gastroenterol. 1993;88:718–22.

    CAS  PubMed  Google Scholar 

  25. Campos AC, Matias JE, Coelho JC. Nutritional aspects of liver transplantation. Curr Opin Clin Nutr Metab Care. 2002;5:297–307.

    PubMed  Google Scholar 

  26. Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA. What is subjective global assessment of nutritional status? J Parenter Enteral Nutr. 1987;11:8–13.

    CAS  Google Scholar 

  27. Driscoll DF, Palombo JD, Bistrian BR. Nutritional and metabolic considerations of the adult liver transplant candidate and donor organ. Nutrition. 1995;11:255–63.

    CAS  PubMed  Google Scholar 

  28. Mullen JL, Buzby GP, Waldman TF, Gertner MH, Hobbs CL, Rosato EL. Prediction of operative morbidity and mortality by preoperative nutritional assessment. Surg Forum. 1979;30:8–11.

    Google Scholar 

  29. Shenkin A. Serum prealbumin: is it a marker of nutritional status or of risk of malnutrition? Clin Chem. 2006;52:2177–9.

    CAS  PubMed  Google Scholar 

  30. Tsuchiya M, Sakaida I, Okamoto M, Okita K. The effect of a late evening snack in patients with liver cirrhosis. Hepatol Res. 2005;31:95–103.

    PubMed  Google Scholar 

  31. Catalano D, Trovato GM, Martines GF, Randazzo M, Tonzuso A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study. Liver Int. 2008;28:1280–7.

    CAS  PubMed  Google Scholar 

  32. Stickel F, Inderbitzin D, Candinas D. Role of nutrition in liver transplantation for end-stage chronic liver disease. Nutr Rev. 2008;66:47–54.

    PubMed  Google Scholar 

  33. Sanchez AJ, Aranda-Michel J. Nutrition for the liver transplant patient. Liver Transplant. 2006;12:1310–6.

    Google Scholar 

  34. Kawaguchi T, Taniguchi E, Itou M, Ibi R, Okada T, Mutou M, et al. Body cell mass is a useful parameter for assessing malnutrition and severity of disease in non-ascitic cirrhotic patients with hepatocellular carcinoma or esophageal varices. Int J Mol Med. 2008;22:589–94.

    CAS  PubMed  Google Scholar 

  35. Anderson LJ, Erceg DN, Schroeder ET. Unity of multifrequency bioelectrical impedance compared with dual-energy X-ray absorptiometry for assessment of total and regional body composition varies between men and women. Nutr Res. 2012;32:479–85.

    CAS  PubMed  Google Scholar 

  36. Hoyle GE, Chua M, Soiza RL. Volaemic assessment of the elderly hyponatraemic patient: reliability of clinical assessment and validation of bioelectrical impedance analysis. QJM. 2011;104:35–9.

    CAS  PubMed  Google Scholar 

  37. Jensky-Squires NE, Dieli-Conwright CM, Rossuello A, Erceg DN, McCauley S, Schroeder ET, et al. Validity and reliability of body composition analyzers in children and adults. Br J Nutr. 2008;100:859–65.

    CAS  PubMed  Google Scholar 

  38. Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55:769–74.

    PubMed  Google Scholar 

  39. Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8.

    PubMed Central  PubMed  Google Scholar 

  40. Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, et al. Severe muscle depletion in patients on the liver transplant wait list: Its prevalence and independent prognostic value. Liver Transpl. 2012;18:1209–16.

    PubMed  Google Scholar 

  41. Plauth M, Cabre E, Riggio O, Assis-Camilo M, Pirlich M, Kondrup J. ESPEN guidelines on enteral nutrition: liver disease. Clin Nutr. 2006;25:285–94.

    CAS  PubMed  Google Scholar 

  42. Plauth M, Cabre E, Campillo B, Kondrup J, Marchesini G, Schütz T. ESPEN guidelines on parenteral nutrition: hepatology. Clin Nutr. 2009;28:436–44.

    PubMed  Google Scholar 

  43. Figueiredo F, Dickson ER, Pasha T, et al. Impact of nutritional status on outcomes after liver transplantation. Transplantation. 2000;70:1347–52.

    CAS  PubMed  Google Scholar 

  44. Nompleggi DJ, Bonkovsky HL. Nutritional supplementation in chronic liver disease: an analytical review. Hepatology. 1994;19:518–23.

    CAS  PubMed  Google Scholar 

  45. Metheny NA, Meert KL, Clouse RE. Complications related to feeding tube placement. Curr Opin Gastroenterol. 2007;23:178–82.

    PubMed  Google Scholar 

  46. Burns D, Schaeffer D, Bosco J. Nutritional assessment of endoscopically placed nasojejunal feeding tubes. Gastrointest Endosc. 1995;41:263–9.

    Google Scholar 

  47. Baskin WN. Acute complications associated with bedside placement of feeding tubes. Nutr Clin Pract. 2006;21:40–55.

    PubMed  Google Scholar 

  48. Martindale RG, McClave SA, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Crit Care Med. 2009;37:1–30.

    Google Scholar 

  49. Yamamoto T. Metabolic response to glucose overload in surgical stress: energy disposal in brown adipose tissue. Surg Today. 1996;26:151–7.

    CAS  PubMed  Google Scholar 

  50. Cabré E, Periago JL, Abad Lacruz A, González Huix F, González J, Esteve Comas M. Plasma fatty acid profile in advanced cirrhosis: unsaturation deficit of lipid fractions. Am J Gastroenterol. 1990;85:1597–604.

    PubMed  Google Scholar 

  51. Driscoll DF, Newton DW, Bistrian BR. Precipitation of calcium phosphate from parenteral nutrient fluids. Am J Hosp Pharm. 1994;51:2834–6.

    CAS  PubMed  Google Scholar 

  52. Moro ML, Maffei C, Manso E, Morace G, Polonelli L, Biavasco F. Nosocomial outbreak of systemic candidosis associated with parenteral nutrition. Infect Control Hosp Epidemiol. 1990;11:27–35.

    CAS  PubMed  Google Scholar 

  53. Seyan AS, Hughes RD, Shawcross DL. Changing face of hepatic encephalopathy: role of inflammation and oxidative stress. World J Gastroenterol. 2010;16:3347–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci. 2005;62:2295–304.

    CAS  PubMed  Google Scholar 

  55. Bianchi GR, Marchesini G, Fabbri A, Rondelli A, Buglanesi E, Zoli M, et al. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomised cross-over comparison. J Intern Med. 1993;233:385–92.

    CAS  PubMed  Google Scholar 

  56. Swart GR, Van den Berg JWO, Wattimena JL, et al. Elevated protein requirements in cirrhosis of the liver investigated by whole body protein turnover studies. Clin Sci (Lond). 1988;75:101–7.

    CAS  Google Scholar 

  57. Hiyama DT, Fischer JE. Nutritional support in hepatic failure: the current role of disease-specific therapy. Total Parenter Nutr. 1991;2:263–78.

    Google Scholar 

  58. Als-Nielsen B, Koretz RL, Gluud LL, Gluud C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst Rev. 2003;2:CD001939.

    PubMed  Google Scholar 

  59. Le Cornu KA, McKiernan FJ, Kapadia SA, Neuberger JM. A prospective randomized study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. Transplantation. 2000;69:1364–9.

    PubMed  Google Scholar 

  60. Reilly J, Mehta R, Teperman L, Cemaj S, Tzakis A, Yanaga K, et al. Nutritional support after liver transplantation: a randomized prospective study. J Parenter Enteral Nutr. 1990;14:386–91.

    CAS  Google Scholar 

  61. Fischer JE, Baldessarini RJ. False neurotransmitters and hepatic failure. Lancet. 1971;2:75–80.

    CAS  PubMed  Google Scholar 

  62. Khanna S, Gopalan S. Role of branched-chain amino acids in liver disease: the evidence for and against. Curr Opin Clin Nutr Metab Care. 2007;10:297–303.

    CAS  PubMed  Google Scholar 

  63. Holecek M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition. 2010;26:482–90.

    CAS  PubMed  Google Scholar 

  64. Shirabe K, Yoshimatsu M, Motomura T, Takeishi K, Toshima T, Muto J, et al. Beneficial effects of supplementation with branched-chain amino acids on postoperative bacteremia in living donor liver transplant recipients. Liver Transpl. 2011;17:1073–80.

    PubMed  Google Scholar 

  65. Nakamura I, Ochiai K, Imawari M. Phagocytic function of neutrophils of patients with decompensated liver cirrhosis is restored by oral supplementation of branched-chain amino acids. Hepatol Res. 2004;29:207–11.

    CAS  PubMed  Google Scholar 

  66. Bassit RA, Sawada LA, Bacurau RF, Navarro F, Martins E Jr, Santos RV, et al. Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition. 2002;18:376–9.

    CAS  PubMed  Google Scholar 

  67. Kawamura E, Habu D, Morikawa H, et al. A randomized pilot trial of oral branched-chain amino acids in early cirrhosis: validation using prognostic markers for preliver transplant status. Liver Transpl. 2009;15:790–7.

    PubMed  Google Scholar 

  68. Takeshita S, Ichikawa T, Nakao K, Miyaaki H, Shibata H, Matsuzaki T, et al. A snack enriched with oral branched chain amino acids prevents a fall in albumin in patients with liver cirrhosis undergoing chemoembolization for hepatocellular carcinoma. Nutr Res. 2009;29:89–93.

    CAS  PubMed  Google Scholar 

  69. Butterworth RF. Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab Brain Dis. 2009;24:189–96.

    CAS  PubMed  Google Scholar 

  70. Levy S, Herve C, Delacoux E, Erlinger S. Thiamine deficiency in hepatitis C virus and alcohol-related liver diseases. Dig Dis Sci. 2002;47:543–8.

    CAS  PubMed  Google Scholar 

  71. Moscarella S, Duchini A, Buzzelli G. Lipoperoxidation, trace elements and vitamin E in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 1994;6:633–6.

    Google Scholar 

  72. Gloria L, Cravo M, Camilo ME, Resende M, Cardoso JN, Oliveira AG, et al. Nutritional deficiencies in chronic alcoholics: relation to dietary intake and alcohol consumption. Am J Gastro. 1997;92:485–9.

    CAS  Google Scholar 

  73. Leo MA, Lieber CS. Alcohol, vitamin A, and beta-carotene:adverse interactions including hepatotoxicity and carcinogenesis. Am J Clin Nutr. 1999;69:1071–85.

    CAS  PubMed  Google Scholar 

  74. Marchesini G, Fabbri A, Bianchi G, Brizi M, Zoli M. Zn supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology. 1996;23:1084–92.

    CAS  PubMed  Google Scholar 

  75. Bitetto D, Fabris C, Falleti E, Fornasiere E, Fumolo E, Fontanini E, et al. Vitamin D and the risk of acute allograft rejection following human liver transplantation. Liver Int. 2010;30:417–44.

    CAS  PubMed  Google Scholar 

  76. Walker NM, Stuart KA, Ryan RJ, Desai S, Saab S, Nicol JA, et al. Serum ferritin concentration predicts mortality in patients awaiting liver transplantation. Hepatology. 2010;51:1683–91.

    CAS  PubMed  Google Scholar 

  77. Barzel US, Massey LK. Excess dietary protein can adversely affect bone. J Nutr. 1998;128:1051–3.

    CAS  PubMed  Google Scholar 

  78. Parhami F, Jackson S, Tintut Y, Le V, Balucan JP, Territo M, et al. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Min Res. 1999;14:2067–78.

    CAS  Google Scholar 

  79. Hay JE, Guichelaar MM. Evaluation and management of osteoporosis in liver disease. Clin Liver Dis. 2005;9:747–66.

    PubMed  Google Scholar 

  80. Beyer N, Aadahl M, Strange B, Mohr T, Kjaer M. Exercise capacity of patients after liver transplantation. Med Sci Sports Exerc. 1995;6:84.

    Google Scholar 

  81. Ritland S, Foss N, Skrede S. The effect of standardized work load on “liver tests” in patients with chronic active hepatitis. J Gastroenterol. 1982;17:1013–6.

    CAS  Google Scholar 

  82. Escartin A, Castro E, Dopazo C, Bueno J, Bilbao I, Margarit C. Analysis of discarded livers for transplantation. Transplant Proc. 2005;37:3859–60.

    CAS  PubMed  Google Scholar 

  83. Marsman WA, Wiesner RH, Rodriguez L, Batts KP, Porayko MK, Hay JE, et al. Use of fatty donor liver is associated with diminished early patient and graft survival. Transplantation. 1996;62:1246–51.

    CAS  PubMed  Google Scholar 

  84. Perkins JD. Saying ‘Yes’ to obese living liver donors: short-term intensive treatment for donors with hepatic steatosis in living-donor liver transplantation. Liver Transplant. 2006;12:1012–3.

    Google Scholar 

  85. Malik SM, de Vera ME, Fontes P, Shaikh O, Ahmad J, et al. Outcome after liver transplantation for NASH cirrhosis. Am J Transplant. 2009;9:782–93.

    CAS  PubMed  Google Scholar 

  86. Driscoll DF, Blackburn GL. A review of its current status in hospitalized patients, and the need for patient-specific feeding. Drugs. 1990;40:346–63.

    CAS  PubMed  Google Scholar 

  87. Plank LD, McCall JL, Gane EJ, Rafique M, Gillanders LK, McIlroy K, et al. Pre- and postoperative immunonutrition in patients undergoing liver transplantation: a pilot study of safety and efficacy. Clin Nutr. 2005;24:288–96.

    PubMed  Google Scholar 

  88. Senkal M, Zumtobel V, Bauer KH, Marpe B, Wolfram G, Frei A, et al. Outcome and cost-effectiveness of perioperative enteral immunonutrition in patients undergoing elective upper gastrointestinal tract surgery: a prospective randomized study. Arch Surg. 1999;134:1309–16.

    CAS  PubMed  Google Scholar 

  89. Jiang H, Li B, Yan LN, Lu SC, Wen TF, Zhao JC, et al. Effect of Intravenous glutamine-dipeptide fortified enteral nutrition on clinical outcomes in patients after liver transplantation: A prospective randomized controlled study. Chin J Clin Nutr. 2007;15:21–5.

    CAS  Google Scholar 

  90. Kaido T, Ogura Y, Ogawa K, Hata K, Yoshizawa A, Yagi S, et al. Effects of post-transplant enteral nutrition with an immunomodulating diet containing hydrolyzed whey peptide after liver transplantation. World J Surg. 2012;36:1666–71.

    PubMed  Google Scholar 

  91. Kume H, Okazaki K, Sasaki H. Hepatoprotective effects of whey protein on D-galactosamine-induced hepatitis and liver fibrosis in rats. Biosci Biotechnol Biochem. 2006;70:1281–5.

    CAS  PubMed  Google Scholar 

  92. Park C, Hsu C, Neelakanta G, Nourmand H, Braunfeld M, Wray C, et al. Severe intraoperative hyperglycemia is independently associated with surgical site infection after liver transplantation. Transplantation. 2009;87:1031–6.

    PubMed  Google Scholar 

  93. Bellot P, Frances R, Such J. Bacterial translocation in cirrhosis. Gastroenterol Hepatol. 2008;31:508–14.

    PubMed  Google Scholar 

  94. Riordan SM, Williams R. The intestinal flora and bacterial infection in cirrhosis. J Hepatol. 2006;45:744–57.

    PubMed  Google Scholar 

  95. Sugawara G, Nagino M, Nishio H, Ebata T, Takagi K, Asahara T. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg. 2006;244:706–14.

    PubMed Central  PubMed  Google Scholar 

  96. Rayes N, Seehofer D, Hansen S, Boucsein K, Müller AR, Serke S. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation. 2002;74:123–7.

    PubMed  Google Scholar 

  97. Rayes N, Seehofer D, Theruvath T, Schiller RA, Langrehr JM, Jonas S. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation, a randomized, double-blind trial. Am J Transplant. 2005;5:125–30.

    PubMed  Google Scholar 

  98. Bajaj JS, Saeian K, Christensen KM, Hafeezullah M, Varma RR, Franco J. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am J Gastroenterol. 2008;103:1707–15.

    PubMed  Google Scholar 

  99. Malaguarnera M, Gargante MP, Malaguarnera G, Salmeri M, Mastrojeni S, Rampello L. Bifidobacterium combined with fructo-oligosaccharide versus lactulose in the treatment of patients with hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2010;22:199–206.

    PubMed  Google Scholar 

  100. Lata J, Novotný I, Príbramská V, Juránková J, Fric P, Kroupa R, Stibůrek O. The effect of probiotics on gut flora, level of endotoxin and Child-Pugh score in cirrhotic patients: results of a double blind randomized study. Eur J Gastroenterol Hepatol. 2007;19:1111–3.

    PubMed  Google Scholar 

  101. Swart GR, Zillikens MC, van Vuure JK, Van den Berg JW. Effect of a late evening meal on nitrogen balance in patients with cirrhosis of the liver. Brit Med J. 1989;299:1202–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Plank LD, Gane EJ, Peng S, Muthu C, Mathur S, Gillanders L. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology. 2008;48:557–66.

    PubMed  Google Scholar 

  103. Bianchi G, Marzocchi R, Agostini F, Marchesini G. Update on nutritional supplementation with branched-chain amino acids. Curr Opin Clin Nutr Metab Care. 2005;8:83–7.

    CAS  PubMed  Google Scholar 

  104. Muñoz SJ, Deems RO, Moritz MJ, Martin P, Jarrell BE, Maddrey WC. Hyperlipidemia and obesity after orthotopic liver transplantation. Transplant Proc. 1991;23:1480–3.

    PubMed  Google Scholar 

  105. Janczewska I, Ericzon BG, Eriksson LS. Influence of orthotopic liver transplantation on serum vitamin A levels in patients with chronic liver disease. Scand J Gastroenterol. 1995;30:68–71.

    CAS  PubMed  Google Scholar 

  106. Pescovitz MD, Mehta PL, Jindal RM, Milgrom ML, Leapman SB, Filo RS. Zinc deficiency and its repletion following liver transplantation in humans. Clin Transplant. 1996;10:256–60.

    CAS  PubMed  Google Scholar 

  107. Palmer M, Schaffner F, Thung SN. Excessive weight gain after liver transplantation. Transplantation. 1991;51:797–800.

    CAS  PubMed  Google Scholar 

  108. Chin SE, Shepherd RW, Cleghorn GJ, Patrick MK, Javorsky G, Frangoulis E. Survival, growth and quality of life in children after orthotopic liver transplantation: a 5 year experience. J Pediatr Child Health. 1991;27:38–85.

    Google Scholar 

  109. Holt RI, Broide E, Buchanan CR, Miell JP, Baker AJ, Mowat AP, Mieli Vergani G. Orthotopic liver transplantation reverses the adverse nutritional changes of end stage liver disease in children. Am J Clin Nutr. 1997;65:534–42.

    CAS  PubMed  Google Scholar 

  110. Porayko MK, DiCecco S, O’Keefe SJD. Impact of malnutrition and its therapy in liver transplantation. Semin Liver Dis. 1991;11:305–14.

    CAS  PubMed  Google Scholar 

  111. Muller MJ, Loyal S, Schwarze M, Lobers J, Selberg O, Ringe B, et al. Resting energy expenditure and nutritional state in patients with liver cirrhosis before and after liver transplantation. Clin Nutr. 1994;13:145–52.

    CAS  PubMed  Google Scholar 

  112. Canzanello VJ, Schwartz L, Taler SJ, Textor SC, Wiesner RH, Porayko MK, et al. Evolution of cardiovascular risk after liver transplantation: a comparison of cyclosporine A and tacrolimus (FK506). Liver Transpl Surg. 1997;3:1–9.

    CAS  PubMed  Google Scholar 

  113. Kaido T, Egawa H, Tsuji H, Ashihara E, Maekawa T, Uemoto S. In-hospital mortality in adult recipients of living donor liver transplantation: experience of 576 consecutive cases at a single center. Liver Transpl. 2009;15:1420–5.

    PubMed  Google Scholar 

  114. Osaki N, Ringe B, Gubernatis G, Takada Y, Yamaguchi T, Yamaoka Y, et al. Changes in energy substrates in relation to arterial ketone body ratio after human orthotopic liver transplantation. Surgery. 1993;113:403–9.

    Google Scholar 

  115. Takada Y, Ozawa K, Yamaoka Y, Uemoto S, Tanaka A, Morimoto T, et al. Arterial ketone body ratio and glucose administration as an energy substrate in relation to changes in ketone body concentration after live-related liver transplantation in children. Transplantation. 1993;55:1314–9.

    CAS  PubMed  Google Scholar 

  116. Hasse J. Liver transplantation: the benefits of nutrition therapy in the liver transplant patient. Liver Transpl. 1996;2:81–100.

    Google Scholar 

  117. Shanbhogue RL, Bistrian BR, Jenkins RL, Randall S, Blackburn GL. Increased protein catabolism without hypermetabolism after human orthotopic liver transplantation. Surgery. 1987;101:146–9.

    CAS  PubMed  Google Scholar 

  118. Pomposelli JJ, Baxter JK III, Babineau TJ, Pomfret EA, Driscoll DF, Forse RA. Early postoperative glucose control predicts nosocomial infection rate in diabetic patients. JPEN. 1998;22:77–81.

    CAS  Google Scholar 

  119. Stegall MD, Everson G, Schroter G, Bilir B, Karrer F, Kam I. Metabolic complications after liver transplantation. Diabetes, hypercholesterolemia, hypertension, and obesity. Transplantation. 1995;60:1057–60.

    CAS  PubMed  Google Scholar 

  120. Richards J, Gunson B, Johnson J, Neuberger J. Weight gain and obesity after liver transplantation. Transpl Int. 2005;18:461–6.

    PubMed  Google Scholar 

  121. Anastácio LR, Ferreira LG, Ribeiro Hde S, Liboredo JC, Lima AS, Correia MI. Metabolic syndrome after liver transplantation: prevalence and predictive factors. Nutrition. 2011;27:931–7.

    PubMed  Google Scholar 

  122. Weseman RA, McCashland TM. Nutritional care of the chronic post-transplant patient. Top Clin Nutr. 1998;13:27–34.

    Google Scholar 

  123. Green GA, Moore GE. Exercise and organ transplantation. J Back Musculoskel Rehabil. 1998;10:3–11.

    Google Scholar 

  124. Van Den Ham EC, Kooman JP, Christiaans MH, van Hooff JP. Relation between steroid dose, body composition and physical activity in renal transplant patients. Transplantation. 2000;69:1591–8.

    PubMed  Google Scholar 

  125. Giannini S, Nobile M, Ciuffreda M, Iemmolo RM, DalleCarbonare L, Minicuci N. Long-term persistence of low bone density in orthotopic liver transplantation. Osteoporosis. 2000;11:417–24.

    CAS  Google Scholar 

  126. Peris P, Navasa M, Guañabens N, Monegal A, Moya F, Brancós MA. Sacral stress fracture after liver transplantation. Br J Rheumatol. 1993;32:702–4.

    CAS  PubMed  Google Scholar 

  127. Millonig G, Graziadci IW, Eichler D, Pfeiffer KP, Finkenstedt G, Muchllechner P, et al. Alendronate in combination with calcium and vitamin D prevents bone loss after orthotopic liver transplantation: a prospective single-center study. Liver Transpl. 2005;11:960–6.

    PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors of this manuscript have any conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Kaido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammad, A., Kaido, T. & Uemoto, S. Perioperative nutritional therapy in liver transplantation. Surg Today 45, 271–283 (2015). https://doi.org/10.1007/s00595-014-0842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-014-0842-3

Keywords

Navigation