Skip to main content

Advertisement

Log in

Baseline eGFR, albuminuria and renal outcomes in patients with SGLT2 inhibitor treatment: an updated meta-analysis

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To elucidate the association between baseline renal characteristics and the disparities in renal outcomes among patients with SGLT2i treatment.

Methods

Pubmed, Medline, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov were searched from inception to November 2022. Event-driven randomized controlled trials of SGLT2i with reports of renal outcomes were included. Sensitivity analyses of prespecified eGFR and UACR subgroups were conducted.

Results

Generally, compared with placebo, the use of SGLT2i was associated with improved renal prognosis (HR = 0.64, 95%CI 0.59–0.70). The magnitude of risk reductions in composite renal outcomes between SGLT2i versus placebo was comparable among different eGFR stratifications (normal renal function: HR = 0.49, 95%CI 0.31–0.79; mild renal impairment: HR = 0.57, 95%CI 0.48–0.68; moderate renal impairment: HR = 0.70, 95%CI 0.63–0.78; severe renal impairment: HR = 0.72, 95%CI 0.62–0.84; P for subgroup difference = 0.09). However, renal benefits seemd to be more prominent in normal to mildly increased albuminuria stratum (HR = 0.51, 95%CI 0.39–0.66) and severely increased albuminuria stratum (HR = 0.57, 95%CI 0.47–0.68), when compared with moderately increased albuminuria stratum (HR = 0.79, 95%CI 0.65–0.96; P for subgroup difference = 0.01).

Conclusions

Generally, the use of SGLT2i was consistently associated with decreased risk of renal events in all prespecified eGFR and albuminuria spectrums, even in patients with substantial renal impairment. The renal benefits of SGLT2i seemed to be independent of baseline eGFR, while the risk reduction in renal events was more profound among patients with mildly increased albuminuria or severely increased albuminuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information. No more additional data are available.

References

  1. Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306

    Article  CAS  PubMed  Google Scholar 

  2. Heerspink HJL, Stefánsson BV, Correa-Rotter R et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446

    Article  CAS  PubMed  Google Scholar 

  3. Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657

    Article  CAS  PubMed  Google Scholar 

  4. Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357

    Article  CAS  PubMed  Google Scholar 

  5. Zelniker TA, Wiviott SD, Raz I et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39

    Article  CAS  PubMed  Google Scholar 

  6. Neuen BL, Young T, Heerspink HJL et al (2019) SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  7. Scheen AJ (2020) Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16(10):556–577

    Article  PubMed  Google Scholar 

  8. Neuen BL, Ohkuma T, Neal B et al (2019) Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria: data from the CANVAS program. J Am Soc Nephrol 30(11):2229–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mosenzon O, Wiviott SD, Cahn A et al (2019) Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 7(8):606–617

    Article  CAS  PubMed  Google Scholar 

  10. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  11. Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334

    Article  CAS  PubMed  Google Scholar 

  12. Cannon CP, Pratley R, Dagogo-Jack S et al (2020) Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 383(15):1425–1435

    Article  CAS  PubMed  Google Scholar 

  13. Cherney DZI, Charbonnel B, Cosentino F et al (2021) Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. Diabetologia 64(6):1256–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakris G, Oshima M, Mahaffey KW et al (2020) Effects of Canagliflozin in Patients with Baseline eGFR <30 ml/min per 1.73 m(2): Subgroup analysis of the randomized CREDENCE trial. Clin J Am Soc Nephrol 15(12):1705–1714

  15. Chertow GM, Vart P, Jongs N et al (2021) Effects of Dapagliflozin in Stage 4 chronic kidney disease. J Am Soc Nephrol 32(9):2352–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhatt DL, Szarek M, Pitt B et al (2021) Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 384(2):129–139

    Article  CAS  PubMed  Google Scholar 

  17. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Judge P, Mayne KJ, Ng SYA, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu W, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Petrini M, Massey D, Eilbracht J, Brueckmann M, Landray MJ, Baigent C, Haynes R. Empagliflozin in patients with chronic kidney disease. N Engl J Med. https://doi.org/10.1056/NEJMoa2204233

    Article  PubMed  PubMed Central  Google Scholar 

  18. McMurray JJV, Solomon SD, Inzucchi SE et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008

    Article  CAS  PubMed  Google Scholar 

  19. Packer M, Anker SD, Butler J et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383(15):1413–1424

    Article  CAS  PubMed  Google Scholar 

  20. Zannad F, Ferreira JP, Pocock SJ et al (2021) Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: insights from EMPEROR-reduced. Circulation 143(4):310–321

    Article  CAS  PubMed  Google Scholar 

  21. Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385(16):1451–1461

    Article  CAS  PubMed  Google Scholar 

  22. Anders HJ, Huber TB, Isermann B et al (2018) CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 14(6):361–377

    Article  CAS  PubMed  Google Scholar 

  23. Alicic RZ, Neumiller JJ, Johnson EJ et al (2019) Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 68(2):248–257

    Article  CAS  PubMed  Google Scholar 

  24. Cherney D, Lund SS, Perkins BA et al (2016) The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia 59(9):1860–1870

    Article  CAS  PubMed  Google Scholar 

  25. Kim NH, Kim NH (2022) Renoprotective mechanism of sodium-glucose cotransporter 2 inhibitors: focusing on renal hemodynamics. Diabetes Metab J 46(4):543–551

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cherney DZ, Perkins BA, Soleymanlou N et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129(5):587–597

    Article  CAS  PubMed  Google Scholar 

  27. Delanaye P, Wissing KM, Scheen AJ (2021) Sodium-glucose cotransporter 2 inhibitors: renal outcomes according to baseline albuminuria. Clin Kidney J 14(12):2463–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Webster AC, Nagler EV, Morton RL et al (2017) Chronic kidney disease. Lancet 389(10075):1238–1252

    Article  PubMed  Google Scholar 

  29. Ye N, Jardine MJ, Oshima M et al (2021) Blood pressure effects of canagliflozin and clinical outcomes in type 2 diabetes and chronic kidney disease: insights from the CREDENCE trial. Circulation 143(18):1735–1749

    Article  CAS  PubMed  Google Scholar 

  30. Dekkers CCJ, Petrykiv S, Laverman GD et al (2018) Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 20(8):1988–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishibashi Y, Matsui T, Yamagishi S (2016) Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm Metab Res 48(3):191–195

    CAS  PubMed  Google Scholar 

  32. Kojima N, Williams JM, Takahashi T et al (2013) Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther 345(3):464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Packer M, Butler J, Zannad F et al (2021) Empagliflozin and major renal outcomes in heart failure. N Engl J Med 385(16):1531–1533

    Article  PubMed  Google Scholar 

  34. Hu S, Lin C, Cai X et al (2021) The urinary glucose excretion by sodium-glucose cotransporter 2 inhibitor in patients with different levels of renal function: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 12:814074

    Article  PubMed  Google Scholar 

  35. Lin C, Cai X, Ji L (2022) Cardiovascular benefits beyond urinary glucose excretion: a hypothesis generated from two meta-analyses. Diabetes Obes Metab 24(3):550–554

    Article  PubMed  Google Scholar 

  36. de Boer IH, Khunti K, Sadusky T et al (2022) Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 45(12):3075–3090

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the doctors, nurses and technicians for their practical during the study at Department of Endocrinology and Metabolism in Peking University People’s Hospital.

Funding

This work was supported by Beijing Natural Science Foundation (No. 7202216) and National Natural Science Foundation of China (No. 81970698 and No. 81970708). The funding agencies had no roles in the study design, data collection or analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LJ and XC conceptualized this study and designed the systematic review protocol; YM and CL performed the study selection and data extraction; XZ and SH checked the data for accuracy; FL provided with consultation for disagreement; YM, CL and XC performed the statistical analyses; YM, CL and XC prepared the outlines and wrote the manuscript. All authors contributed to the critical revision of manuscript drafts.

Corresponding authors

Correspondence to Xiaoling Cai or Linong Ji.

Ethics declarations

Conflict of interest

LJ has received fees for lecture presentations and for consulting from AstraZeneca, Merck, Metabasis, MSD, Novartis, Eli Lilly, Roche, Sanofi-Aventis and Takeda. No other support from any organization for the submitted work other than that described above.

Ethical approval

Since it is a meta-analysis, ethical approval is not applicable.

Ethical Standard Statement

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments.

Informed consent disclosure

Since it was a meta-analysis of randomized controlled trials, the informed consents were obtained from the participants before the enrollments of the clinical trials. No further informed consents were required for this meta-analysis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Diabetic Nephropathy, managed by Giuseppe Pugliese.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 160 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Lin, C., Cai, X. et al. Baseline eGFR, albuminuria and renal outcomes in patients with SGLT2 inhibitor treatment: an updated meta-analysis. Acta Diabetol 60, 435–445 (2023). https://doi.org/10.1007/s00592-022-02022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-02022-7

Keywords

Navigation