Skip to main content

Advertisement

Log in

Enhanced insulin sensitivity and acute regulation of metabolic genes and signaling pathways after a single electrical or manual acupuncture session in female insulin-resistant rats

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

An Erratum to this article was published on 14 November 2014

Abstract

Aim

To compare the effect of a single session of acupuncture with either low-frequency electrical or manual stimulation on insulin sensitivity and molecular pathways in the insulin-resistant dihydrotestosterone-induced rat polycystic ovary syndrome (PCOS) model. Both stimulations cause activation of afferent nerve fibers. In addition, electrical stimulation causes muscle contractions, enabling us to differentiate changes induced by activation of sensory afferents from contraction-induced changes.

Materials and Methods

Control and PCOS rats were divided into no-stimulation, manual-, and electrical stimulation groups and insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Manually stimulated needles were rotated 180° ten times every 5 min, or low-frequency electrical stimulation was applied to evoke muscle twitches for 45 min. Gene and protein expression were analyzed by real-time PCR and Western blot.

Results

The glucose infusion rate (GIR) was lower in PCOS rats than in controls. Electrical stimulation was superior to manual stimulation during treatment but both methods increased GIR to the same extent in the post-stimulation period. Electrical stimulation decreased mRNA expression of Adipor2, Adrb1, Fndc5, Erk2, and Tfam in soleus muscle and increased ovarian Adrb2 and Pdf. Manual stimulation decreased ovarian mRNA expression of Erk2 and Sdnd. Electrical stimulation increased phosphorylated ERK levels in soleus muscle.

Conclusions

One acupuncture session with electrical stimulation improves insulin sensitivity and modulates skeletal muscle gene and protein expression more than manual stimulation. Although electrical stimulation is superior to manual in enhancing insulin sensitivity during stimulation, they are equally effective after stimulation indicating that it is activation of sensory afferents rather than muscle contraction per se leading to the observed changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kahn R, Buse J, Ferrannini E, Stern M (2005) The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 48(9):1684–1699. doi:10.1007/s00125-005-1876-2

    Article  CAS  PubMed  Google Scholar 

  2. Oda E (2012) Metabolic syndrome: its history, mechanisms, and limitations. Acta Diabetol 49(2):89–95. doi:10.1007/s00592-011-0309-6

    Article  CAS  PubMed  Google Scholar 

  3. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, Carmina E, Chang J, Yildiz BO, Laven JS, Boivin J, Petraglia F, Wijeyeratne CN, Norman RJ, Dunaif A, Franks S, Wild RA, Dumesic D, Barnhart K (2012) Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril 97(1):28–38 e25. doi:10.1016/j.fertnstert.2011.09.024

  4. Moran LJ, Misso ML, Wild RA, Norman RJ (2010) Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 16(4):347–363. doi:10.1093/humupd/dmq001dmq001

    Article  CAS  PubMed  Google Scholar 

  5. Carmina E, Lobo RA (2004) Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil Steril 82(3):661–665. doi:10.1016/j.fertnstert.2004.01.041S0015-0282(04)00900-8

    Article  PubMed  Google Scholar 

  6. DeUgarte CM, Bartolucci AA, Azziz R (2005) Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 83(5):1454–1460. doi:10.1016/j.fertnstert.2004.11.070

    Article  CAS  PubMed  Google Scholar 

  7. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Li Z, You L, Zhao J, Liu J, Liang X, Zhao X, Sun Y, Zhang B, Jiang H, Zhao D, Bian Y, Gao X, Geng L, Li Y, Zhu D, Sun X, Xu JE, Hao C, Ren CE, Zhang Y, Chen S, Zhang W, Yang A, Yan J, Ma J, Zhao Y (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43(1):55–59. doi:10.1038/ng.732

    Article  PubMed  Google Scholar 

  8. Saxena R, Welt CK (2013) Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes. Acta Diabetol 50(3):451–457. doi:10.1007/s00592-012-0383-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Diamanti-Kandarakis E, Economou F, Palimeri S, Christakou C (2010) Metformin in polycystic ovary syndrome. Ann NY Acad Sci 1205:192–198. doi:10.1111/j.1749-6632.2010.05679.x

    Article  CAS  PubMed  Google Scholar 

  10. Manneras L, Jonsdottir IH, Holmang A, Lonn M, Stener-Victorin E (2008) Low-frequency electro-acupuncture and physical exercise improve metabolic disturbances and modulate gene expression in adipose tissue in rats with dihydrotestosterone-induced polycystic ovary syndrome. Endocrinology 149(7):3559–3568. doi:10.1210/en.2008-0053en.2008-0053

    Article  PubMed  Google Scholar 

  11. Shapira MY, Appelbaum EY, Hirshberg B, Mizrahi Y, Bar-On H, Ziv E (2000) A sustained, non-insulin related, hypoglycaemic effect of electroacupuncture in diabetic Psammomys obesus. Diabetologia 43(6):809–813. doi:10.1007/s001250051379

    Article  CAS  PubMed  Google Scholar 

  12. Tominaga A, Ishizaki N, Naruse Y, Kitakoji H, Yamamura Y (2011) Repeated application of low-frequency electroacupuncture improves high-fructose diet-induced insulin resistance in rats. Acupunct Med 29(4):276–283. doi:10.1136/acupmed-2011-010006acupmed-2011-010006

    Article  PubMed  Google Scholar 

  13. Kagitani F, Uchida S, Hotta H (2010) Afferent nerve fibers and acupuncture. Auton Neurosci 157(1–2):2–8. doi:10.1016/j.autneu.2010.03.004

    Article  PubMed  Google Scholar 

  14. Mannerås L, Cajander S, Holmäng A, Seleskovic Z, Lystig T, Lönn M, Stener-Victorin E (2007) A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 148(8):3781–3791

    Article  PubMed  Google Scholar 

  15. van Houten EL, Kramer P, McLuskey A, Karels B, Themmen AP, Visser JA (2012) Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology. doi:10.1210/en.2011-1754

    PubMed  Google Scholar 

  16. Johansson J, Yi F, Shao R, Lonn M, Billig H, Stener-Victorin E (2010) Intense acupuncture normalizes insulin sensitivity, increases muscle GLUT4 content, and improves lipid profile in a rat model of polycystic ovary syndrome. Am J Physiol Endocrinol Metab 299:E551–E559. doi:10.1152/ajpendo.00323.2010

    Article  CAS  PubMed  Google Scholar 

  17. Johansson J, Manneras-Holm L, Shao R, Olsson A, Lonn M, Billig H, Stener-Victorin E (2013) Electrical vs manual acupuncture stimulation in a rat model of polycystic ovary syndrome: different effects on muscle and fat tissue insulin signaling. PLoS ONE 8(1):e54357. doi:10.1371/journal.pone.0054357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lin RT, Tzeng CY, Lee YC, Ho WJ, Cheng JT, Lin JG, Chang SL (2009) Acute effect of electroacupuncture at the Zusanli acupoints on decreasing insulin resistance as shown by lowering plasma free fatty acid levels in steroid-background male rats. BMC Complement Altern Med 9:26. doi:10.1186/1472-6882-9-26

    Article  PubMed Central  PubMed  Google Scholar 

  19. Liang F, Chen R, Nakagawa A, Nishizawa M, Tsuda S, Wang H, Koya D (2011) Low-frequency electroacupuncture improves insulin sensitivity in obese diabetic mice through activation of SIRT1/PGC-1alpha in skeletal muscle. Evid Based Complement Altern Med 2011:735297. doi:10.1155/2011/735297

    Google Scholar 

  20. Ishizaki N, Okushi N, Yano T, Yamamura Y (2009) Improvement in glucose tolerance as a result of enhanced insulin sensitivity during electroacupuncture in spontaneously diabetic Goto-Kakizaki rats. Metabolism 58(10):1372–1378. doi:10.1016/j.metabol.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  21. Higashimura Y, Shimoju R, Maruyama H, Kurosawa M (2009) Electro-acupuncture improves responsiveness to insulin via excitation of somatic afferent fibers in diabetic rats. Auton Neurosci 150(1–2):100–103. doi:10.1016/j.autneu.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  22. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR Data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. doi:10.1158/0008-5472.can-04-0496

    Article  CAS  PubMed  Google Scholar 

  23. Deshmukh AS, Hawley JA, Zierath JR (2008) Exercise-induced phospho-proteins in skeletal muscle. Int J Obes (Lond) 32(Suppl 4):S18–S23. doi:10.1038/ijo.2008.118

    Article  CAS  Google Scholar 

  24. Goodyear LJ, Kahn BB (1998) Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49:235–261. doi:10.1146/annurev.med.49.1.235

    Article  CAS  PubMed  Google Scholar 

  25. Chang S-L, Lin K-J, Lin R-T, Hung P-H, Lin J-G, Cheng J-T (2006) Enhanced insulin sensitivity using electroacupuncture on bilateral Zusanli acupoints (ST 36) in rats. Life Sci 79(10):967–971

    Article  CAS  PubMed  Google Scholar 

  26. Chang SL, Lin JG, Chi TC, Liu IM, Cheng JT (1999) An insulin-dependent hypoglycaemia induced by electroacupuncture at the Zhongwan (CV12) acupoint in diabetic rats. Diabetologia 42(2):250–255

    Article  CAS  PubMed  Google Scholar 

  27. Wallberg-Henriksson H (1987) Glucose transport into skeletal muscle. Influence of contractile activity, insulin, catecholamines and diabetes mellitus. Acta Physiol Scand Suppl 564:1–80

    CAS  PubMed  Google Scholar 

  28. Corbould A, Zhao H, Mirzoeva S, Aird F, Dunaif A (2006) Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome. Diabetes 55(3):751–759

    Article  CAS  PubMed  Google Scholar 

  29. Tsutaki A, Ogasawara R, Kobayashi K, Lee K, Kouzaki K, Nakazato K (2013) Effect of intermittent low-frequency electrical stimulation on the rat gastrocnemius muscle. BioMed Res Int 2013:480620. doi:10.1155/2013/480620

    Article  PubMed Central  PubMed  Google Scholar 

  30. Widegren U, Jiang XJ, Krook A, Chibalin AV, Bjornholm M, Tally M, Roth RA, Henriksson J, Wallberg-henriksson H, Zierath JR (1998) Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 12(13):1379–1389

    CAS  PubMed  Google Scholar 

  31. Li S, Huang X, Zhong H, Peng Q, Chen S, Xie Y, Qin X, Qin A (2014) Low circulating adiponectin levels in women with polycystic ovary syndrome: an updated meta-analysis. Tumour Biol. doi:10.1007/s13277-013-1595-0

    Google Scholar 

  32. van Houten AF, Kramer P, McLuskey A, Karels B, Themmen A, Visser JA (2012) Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology 153(4):2861–2869

    Article  PubMed  Google Scholar 

  33. Huang H, Iida KT, Sone H, Ajisaka R (2007) The regulation of adiponectin receptors expression by acute exercise in mice. Exp Clin Endocrinol Diabetes 115(7):417–422. doi:10.1055/s-2007-981660

    Article  CAS  PubMed  Google Scholar 

  34. Bouassida A, Chamari K, Zaouali M, Feki Y, Zbidi A, Tabka Z (2010) Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med 44(9):620–630. doi:10.1136/bjsm.2008.046151

    Article  CAS  PubMed  Google Scholar 

  35. Sverrisdottir YB, Mogren T, Kataoka J, Janson PO, Stener-Victorin E (2008) Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am J Physiol Endocrinol Metab 294(3):E576–E581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Genomics Core Facility at the Sahlgrenska Academy, University of Gothenburg, for the use of equipment and support. The genomics facility was funded by a grant from the Knut and Alice Wallenberg Foundation. This work was supported by the Swedish Medical Research Council (Project No. 2008-72VP-15445-01A and K2012-55X-15276-08-3); Wilhelm and Martina Lundgren’s Science Fund; the Hjalmar Svensson Foundation; the Adlerbert Research Foundation; the Åke Wiberg Foundation (Project No. 226441413); The Royal Society of Arts and Sciences in Gothenburg; and the Swedish federal government under the LUA/ALF agreement ALFFGBG-136481.

Conflict of interest

Anna Benrick, Manuel Maliqueo, Julia Johansson, Miao Sun, Xiaoke Wu, Louise Mannerås-Holm, and Elisabet Stener-Victorin declare that they have no conflict of interest.

Human and animal rights disclosure

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Statement of informed consent

We would like to mention that there are no patients in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Stener-Victorin.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benrick, A., Maliqueo, M., Johansson, J. et al. Enhanced insulin sensitivity and acute regulation of metabolic genes and signaling pathways after a single electrical or manual acupuncture session in female insulin-resistant rats. Acta Diabetol 51, 963–972 (2014). https://doi.org/10.1007/s00592-014-0645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0645-4

Keywords

Navigation