Skip to main content

Advertisement

Log in

Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes

  • Short Communication
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a disorder of irregular menses, hyperandrogenism and/or polycystic ovary morphology. A large proportion of women with PCOS also exhibit insulin resistance, β-cell dysfunction, impaired glucose tolerance and/or type 2 diabetes (T2D). We therefore hypothesized that genetic variants that predispose to risk of T2D also result in risk of PCOS. Variants robustly associated with T2D in candidate gene or genome-wide association studies (GWAS; n = 56 SNPs from 33 loci) were genotyped in women of European ancestry with PCOS (n = 525) and controls (n = 472), aged 18–45 years. Metabolic, reproductive and anthropomorphic data were examined as a function of the T2D variants. All genetic association analyses were adjusted for age, BMI and ancestry and were reported after correction for multiple testing. There was a nominal association between variants in KCNJ11 and risk of PCOS. However, a risk score of 33 independent T2D-associated variants from GWAS was not significantly associated with PCOS. T2D variants were associated with PCOS phenotype parameters including those in THADA and WFS1 with testosterone levels, ENPP/PC1 with triglyceride levels, FTO with glucose levels and KCNJ11 with FSH levels. Diabetes risk variants are not important risk variants for PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47

    Google Scholar 

  2. Dunaif A, Segal KR, Futterweit W, Dobrjansky A (1989) Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 38:1165–1174

    Article  PubMed  CAS  Google Scholar 

  3. Chang RJ, Nakamura RM, Judd HL, Kaplan SA (1983) Insulin resistance in nonobese patients with polycystic ovarian disease. J Clin Endocrinol Metab 57:356–359

    Article  PubMed  CAS  Google Scholar 

  4. Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS (1995) Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 96:520–527

    Article  PubMed  CAS  Google Scholar 

  5. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J (1999) Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 22:141–146

    Article  PubMed  CAS  Google Scholar 

  6. Legro RS, Kunselman AR, Dodson WC, Dunaif A (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 84:165–169

    Article  PubMed  CAS  Google Scholar 

  7. Welt CK, Arason G, Gudmundsson JA et al (2006) Defining constant versus variable phenotypic features of women with polycystic ovary syndrome using different ethnic groups and populations. J Clin Endocrinol Metab 91:4361–4368

    Article  PubMed  CAS  Google Scholar 

  8. Conn JJ, Jacobs HS, Conway GS (2000) The prevalence of polycystic ovaries in women with type 2 diabetes mellitus. Clin Endocrinol (Oxf) 52:81–86

    Article  CAS  Google Scholar 

  9. Ehrmann DA, Kasza K, Azziz R, Legro RS, Ghazzi MN (2005) Effects of race and family history of type 2 diabetes on metabolic status of women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:66–71

    Article  PubMed  CAS  Google Scholar 

  10. Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  PubMed  CAS  Google Scholar 

  11. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  PubMed  CAS  Google Scholar 

  12. Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Article  PubMed  CAS  Google Scholar 

  13. Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  14. McAteer JB, Prudente S, Bacci S et al (2008) The ENPP1 K121Q polymorphism is associated with type 2 diabetes in European populations: evidence from an updated meta-analysis in 42,042 subjects. Diabetes 57:1125–1130

    Article  PubMed  CAS  Google Scholar 

  15. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    Article  PubMed  CAS  Google Scholar 

  16. Rung J, Cauchi S, Albrechtsen A et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41:1110–1115

    Article  PubMed  CAS  Google Scholar 

  17. Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  PubMed  CAS  Google Scholar 

  18. Sandhu MS, Weedon MN, Fawcett KA et al (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39:951–953

    Article  PubMed  CAS  Google Scholar 

  19. Ewens KG, Jones MR, Ankener W et al (2011) Type 2 diabetes susceptibility single-nucleotide polymorphisms are not associated with polycystic ovary syndrome. Fertil Steril 95:2538–2541

    Article  PubMed  CAS  Google Scholar 

  20. Barber TM, Bennett AJ, Groves CJ et al (2007) Disparate genetic influences on polycystic ovary syndrome (PCOS) and type 2 diabetes revealed by a lack of association between common variants within the TCF7L2 gene and PCOS. Diabetologia 50:2318–2322

    Article  PubMed  CAS  Google Scholar 

  21. Barber TM, Bennett AJ, Gloyn AL et al (2007) Relationship between E23K (an established type II diabetes-susceptibility variant within KCNJ11), polycystic ovary syndrome and androgen levels. Eur J Hum Genet 15:679–684

    Article  PubMed  CAS  Google Scholar 

  22. Barber TM, Bennett AJ, Groves CJ et al (2008) Association of variants in the fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. Diabetologia 51:1153–1158

    Article  PubMed  CAS  Google Scholar 

  23. Li C, Shi Y, You L, Wang L, Chen ZJ (2011) Association of rs10830963 and rs10830962 SNPs in the melatonin receptor (MTNR1B) gene among Han Chinese women with polycystic ovary syndrome. Mol Hum Reprod 17:193–198

    Article  PubMed  CAS  Google Scholar 

  24. Wang L, Wang Y, Zhang X et al (2010) Common genetic variation in MTNR1B is associated with serum testosterone, glucose tolerance, and insulin secretion in polycystic ovary syndrome patients. Fertil Steril 94(2486):2489

    Google Scholar 

  25. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Google Scholar 

  26. Biyasheva A, Legro RS, Dunaif A, Urbanek M (2009) Evidence for association between polycystic ovary syndrome (PCOS) and TCF7L2 and glucose intolerance in women with PCOS and TCF7L2. J Clin Endocrinol Metab 94:2617–2625

    Article  PubMed  CAS  Google Scholar 

  27. Chen ZJ, Zhao H, He L et al (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43:55–59

    Article  PubMed  Google Scholar 

  28. Price AL, Butler J, Patterson N et al (2008) Discerning the ancestry of European Americans in genetic association studies. PLoS Genet 4:e236

    Article  PubMed  Google Scholar 

  29. Price AL, Patterson N, Yu F et al (2007) A genomewide admixture map for Latino populations. Am J Hum Genet 80:1024–1036

    Article  PubMed  CAS  Google Scholar 

  30. Smith MW, Patterson N, Lautenberger JA et al (2004) A high-density admixture map for disease gene discovery in african americans. Am J Hum Genet 74:1001–1013

    Article  PubMed  CAS  Google Scholar 

  31. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  32. Cornelis MC, Qi L, Zhang C et al (2009) Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med 150:541–550

    Article  PubMed  Google Scholar 

  33. Christopoulos P, Mastorakos G, Gazouli M et al (2008) Genetic variants in TCF7L2 and KCNJ11 genes in a Greek population with polycystic ovary syndrome. Gynecol Endocrinol 24:486–490

    Article  PubMed  CAS  Google Scholar 

  34. Maciel GA, Baracat EC, Benda JA et al (2004) Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab 89:5321–5327

    Article  PubMed  CAS  Google Scholar 

  35. Webber LJ, Stubbs S, Stark J et al (2003) Formation and early development of follicles in the polycystic ovary. Lancet 362:1017–1021

    Article  PubMed  CAS  Google Scholar 

  36. Hamming KS, Soliman D, Matemisz LC et al (2009) Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes 58:2419–2424

    Article  PubMed  CAS  Google Scholar 

  37. Karschin C, Ecke C, Ashcroft FM, Karschin A (1997) Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 401:59–64

    Article  PubMed  CAS  Google Scholar 

  38. Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML (2000) Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 3:757–758

    Article  PubMed  CAS  Google Scholar 

  39. Costanzo BV, Trischitta V, Di PR et al (2001) The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYS121). Diabetes 50:831–836

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez-Sanchez JL, Martinez-Larrad MT, Fernandez-Perez C, Kubaszek A, Laakso M, Serrano-Rios M (2003) K121Q PC-1 gene polymorphism is not associated with insulin resistance in a Spanish population. Obes Res 11:603–605

    Article  PubMed  CAS  Google Scholar 

  41. Shi X, Wang L, Jin F et al (2011) The ENPP1 K121Q polymorphism is not associated with type 2 diabetes in northern Chinese. Acta Diabetol 48:303–310

    Article  PubMed  CAS  Google Scholar 

  42. Heinonen S, Korhonen S, Helisalmi S, Koivunen R, Tapanainen JS, Laakso M (2004) The 121Q allele of the plasma cell membrane glycoprotein 1 gene predisposes to polycystic ovary syndrome. Fertil Steril 82:743–745

    Article  PubMed  CAS  Google Scholar 

  43. Inoue H, Tanizawa Y, Wasson J et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148

    Article  PubMed  CAS  Google Scholar 

  44. Ewens KG, Jones MR, Ankener W et al (2011) FTO and MC4R gene variants are associated with obesity in polycystic ovary syndrome. PLoS ONE 20(6):e16390

    Article  Google Scholar 

  45. Wehr E, Schweighofer N, Moller R, Giuliani A, Pieber TR, Obermayer-Pietsch B (2010) Association of FTO gene with hyperandrogenemia and metabolic parameters in women with polycystic ovary syndrome. Metabolism 59:575–580

    Article  PubMed  CAS  Google Scholar 

  46. Freathy RM, Timpson NJ, Lawlor DA et al (2008) Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 57:1419–1426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health U01 HD 4417 and 1R01HD065029, ADA 1-10-CT-57, and 1 UL1 RR025758 Harvard Clinical and Translational Science Center and M01-RR-01066 from the National Center for Research Resources.

Conflict of interest

The authors have no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Welt.

Additional information

Communicated by Massimo Federici.

Clinical Trials Number: NCT00166569.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, R., Welt, C.K. Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes. Acta Diabetol 50, 451–457 (2013). https://doi.org/10.1007/s00592-012-0383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0383-4

Keywords

Navigation