Skip to main content
Log in

Factors associated with abnormal T-wave axis and increased QRS-T angle in type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Frontal plane T-wave axis and QRS-T angle are novel electrocardiographic ventricular repolarization parameters that have been scarcely evaluated in type 2 diabetes. The aim was to investigate the factors associated with these parameters of abnormal ventricular repolarization in a cross-sectional analysis of 594 patients with type 2 diabetes. Clinical, laboratory, 2D-echocardiographic, ambulatory blood pressure (BP) monitoring, aortic pulse wave velocity (PWV) and carotid ultrasonographic data were obtained. Digital 12-lead ECG was recorded, and frontal plane T-wave axis and QRS-T angle were automatically measured. T-wave axis was considered abnormal if >75° or <15° and QRS-T angle if ≥73° in men and ≥67° in woman. Associations were assessed by bivariate tests and multivariate logistic regressions. One hundred and four (20.9 %) patients had abnormal T-wave axis, and 84 (14 %) had increased QRS-T angle. Patients with abnormal ventricular repolarization were older and had greater prevalence of micro- and macrovascular diabetic complications than patients with normal repolarization. They had higher office and ambulatory BPs, greater prevalence of the non-dipping pattern, and greater left ventricular mass, aortic PWV and carotid intima-media thickness. On multivariate analysis, abnormal ventricular repolarization parameters were independently associated with left ventricular hypertrophy, non-dipping pattern, higher ambulatory systolic BPs, glycated hemoglobin and common carotid intima-media thickness, and with the presence of coronary artery disease. In conclusion, abnormal frontal plane T-wave axis and QRS-T angle are independently associated with several markers of pre-clinical atherosclerotic disease; whether these associations represent additional cardiovascular risk in type 2 diabetes shall be confirmed in prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siscovick DS, Sotoodehnia N, Rea TD, Raghunathan TE, Jouven X, Lemaitre RN (2010) Type 2 diabetes mellitus and the risk of sudden cardiac arrest in the community. Rev Endocr Metab Disord 11:53–59

    Article  PubMed  Google Scholar 

  2. Kuo CS, Reddy CP, Munakata K, Surawicz B (1985) Mechanism of ventricular arrhythmias caused by increased dispersion of repolarization. Eur Heart J 6:63–70

    Article  PubMed  Google Scholar 

  3. Lux RL, Hilbel T, Brockmeier K (2001) Electrocardiographic measures of repolarization revisited: Why? What? How? J Electrocardiol 34(suppl 1):259–264

    Article  PubMed  Google Scholar 

  4. Montanez A, Ruskin JN, Hebert PR, Lamas GA, Hennekens CH (2004) Prolonged QTc interval and risks of total and cardiovascular mortality and sudden death in the general population. Arch Intern Med 164:943–948

    Article  PubMed  Google Scholar 

  5. Goldenberg I, Moss AJ, Zareba W (2006) QT interval: how to measure it and what is “normal”. J Cardiovasc Electrophysiol 17:333–336

    Article  PubMed  Google Scholar 

  6. Vaidean GD, Schroeder EB, Whitsel EA, Prineas RJ, Chambless LE, Perhac JS et al (2005) Short-term repeatability of electrocardiographic spatial T-wave axis and QT interval. J Electrocardiol 38:139–147

    Article  PubMed  Google Scholar 

  7. Alagiakrishnan K, Beitel JD, Graham MM, Southern D, Knudtson M, Ghali WA, APPROACH Investigators et al (2005) Relation of T-axis abnormalities to coronary artery disease and survival after cardiac catheterization. Am J Cardiol 96:639–642

    Article  PubMed  Google Scholar 

  8. Borleffs CJ, Scherptong RW, Man SC, van Welsenes GH, Bax JJ, van Erven L et al (2009) Predicting ventricular arrhythmias in patients with ischemic heart disease: clinical application of the ECG-derived QRS-T angle. Circ Arrhythm Electrophysiol 2:548–554

    Article  PubMed  Google Scholar 

  9. Yamazaki T, Froelicher VF, Myers J, Chun S, Wang P (2005) Spatial QRS-T angle predicts cardiac death in a clinical population. Heart Rhythm 2:73–78

    Article  PubMed  Google Scholar 

  10. Aro AL, Huikuri HV, Tikkanen JT, Junttila MJ, Rissanen HA, Reunanen A et al (2012) QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. Europace 14:872–876

    Article  PubMed  Google Scholar 

  11. Kors JA, de Bruyne MC, Hoes AW, van Herpen G, Hofman A, van Bemmel JH et al (1998) T axis as an indicator of risk of cardiac events in elderly people. Lancet 352:601–605

    Article  PubMed  CAS  Google Scholar 

  12. Rautaharju PM, Nelson JC, Kronmal RA, Zhang ZM, Robbins J, Gottdiener JS et al (2001) Usefulness of T-axis deviation as an independent risk indicator for incident cardiac events in older men and women free from coronary heart disease (the cardiovascular health study). Am J Cardiol 88:118–123

    Article  PubMed  CAS  Google Scholar 

  13. Kardys I, Kors JA, van der Meer IM, Hofman A, van der Kuip DA, Witteman JC (2003) Spatial QRS-T angle predicts cardiac death in a general population. Eur Heart J 24:1357–1364

    Article  PubMed  Google Scholar 

  14. Zhang ZM, Prineas RJ, Case D, Soliman EZ, Rautaharju PM, ARIC Research Group (2007) Comparison of the prognostic significance of the electrocardiographic QRS/T angles in predicting incident coronary heart disease and total mortality (from the atherosclerosis risk in communities study). Am J Cardiol 100:844–849

    Article  PubMed  Google Scholar 

  15. Voulgari C, Moyssakis I, Perrea D, Kyriaki D, Katsilambros N, Tentolouris N (2010) The association between the spatial QRS-T angle with cardiac autonomic neuropathy in subjects with type 2 diabetes mellitus. Diabet Med 27:1420–1429

    Article  PubMed  CAS  Google Scholar 

  16. Voulgari C, Tentolouris N, Moyssakis I, Dilaveris P, Gialafos E, Papadogiannis D et al (2006) Spatial QRS-T angle: association with diabetes and left ventricular performance. Eur J Clin Invest 36:608–613

    Article  PubMed  Google Scholar 

  17. Cardoso CR, Leite NC, Freitas L, Dias SB, Muxfeld ES, Salles GF (2008) Pattern of 24-hour ambulatory blood pressure monitoring in type 2 diabetic patients with cardiovascular dysautonomy. Hypertens Res 31:865–872

    Article  PubMed  Google Scholar 

  18. Cardoso CR, Ferreira MT, Leite NC, Barros PN, Conte PH, Salles GF (2009) Microvascular degenerative complications are associated with increased aortic stiffness in type 2 diabetic patients. Atherosclerosis 205:472–476

    Article  PubMed  CAS  Google Scholar 

  19. Devereux RB, Reichek N (1997) Echocardiographic determination of left ventricular mass in man Anatomic validation of the method. Circulation 55:613–618

    Article  Google Scholar 

  20. Cardoso CRL, Marques CEC, Leite NC, Salles GF (2012) Factors associated with carotid intima-media thickness and carotid plaques in type 2 diabetes. J Hypertension 30:940–947

    Article  CAS  Google Scholar 

  21. Dilaveris P, Gialafos E, Pantazis A, Synetos A, Triposkiadis F, Gialafos J (2001) The spatial QRS-T angle as a marker of ventricular repolarisation in hypertension. J Hum Hypertens 15:63–70

    Article  PubMed  CAS  Google Scholar 

  22. Faramawi MF, Sall M, Abdul Kareem MY (2008) The association of the metabolic syndrome with T-wave axis deviation in NHANES III. Ann Epidemiol 18:702–707

    Article  PubMed  Google Scholar 

  23. Salles GF, Cardoso CR, Muxfeldt ES (2008) Prognostic influence of office and ambulatory blood pressures in resistant hypertension. Arch Intern Med 168:2340–2346

    Article  PubMed  Google Scholar 

  24. Eguchi K, Pickering TG, Hoshide S, Ishikawa J, Ishikawa S, Schwartz JE et al (2008) Ambulatory blood pressure is a better marker than clinic blood pressure in predicting cardiovascular events in patients with/without type 2 diabetes. Am J Hypertens 21:443–450

    Article  PubMed  Google Scholar 

  25. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M et al (2002) Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 20:2183–2189

    Article  PubMed  CAS  Google Scholar 

  26. Rubulis A, Jensen J, Lundahl G, Tapanainen J, Bergfeldt L (2006) Ischemia induces aggravation of baseline repolarization abnormalities in left ventricular hypertrophy: a deleterious interaction. J Appl Physiol 101:102–110

    Article  PubMed  Google Scholar 

  27. May O, Arildsen H (2011) Long-term predictive power of simple function tests for cardiovascular autonomic neuropathy in diabetes: a population-based study. Acta Diabetol 48:311–316

    Article  PubMed  CAS  Google Scholar 

  28. Marfella R, Nappo F, De Angelis L, Siniscalchi M, Rossi F, Giuliano D (2000) The effect of hyperglycaemia on QTc duration in healthy man. Diabetologia 43:571–575

    Article  PubMed  CAS  Google Scholar 

  29. Vanninen E, Unsitupa MI, Länsimies E (1996) Ventricular repolarization is correlated with metabolic control in newly diagnosed type 2 diabetes. Clin Physiol 16:449–461

    Article  PubMed  CAS  Google Scholar 

  30. O Hartaigh B, Jiang CQ, Bosch JA, Zhang WS, Cheng KK, Lam TH, Thomas GN (2012) Influence of heart rate at rest for predicting the metabolic syndrome in older Chinese adults. Acta Diabetol [Epub ahead of print]

  31. Festa A, D’Agostino R Jr, Rautaharju P, O’Leary DH, Rewers M, Mykkanen L et al (1999) Is QT interval a marker of subclinical atherosclerosis in nondiabetic subjects? The insulin resistance atherosclerosis study (IRAS). Stroke 30:1566–1571

    Article  PubMed  CAS  Google Scholar 

  32. Strohmer B, Pichler M, Iglseder B, Paulweber B (2005) Relationship of QT interval duration with carotid intima-media thickness in a clinically healthy population undergoing cardiovascular risk screening. J Intern Med 257:238–246

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by grants from Conselho Brasileiro de Desenvolvimento Científico e Tecnológico (CNPq) and from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil F. Salles.

Additional information

Communicated by Renato Lauro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, C.R.L., Leite, N.C. & Salles, G.F. Factors associated with abnormal T-wave axis and increased QRS-T angle in type 2 diabetes. Acta Diabetol 50, 919–925 (2013). https://doi.org/10.1007/s00592-013-0483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-013-0483-9

Keywords

Navigation