Skip to main content
Log in

Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

AQP7 is a glycerol channel in adipose tissue with a suggested role in controlling the accumulation of triglycerides and secondly development of obesity and type-2 diabetes. In the present study, we aimed to test the hypotheses that (1) AQP7 is localized to the capillaries within human adipose tissue, (2) genetic predisposition to type-2 diabetes is associated with a low expression of AQP7 in abdominal subcutaneous adipose tissue (SAT) and (3) physical training increases AQP7 expression in SAT. The cellular localization of AQP7 in adipose tissue was investigated by immunohistochemistry. The relative expression of AQP7 protein in abdominal SAT was analysed before and after ending a 10-week exercise training programme in first-degree relatives to type-2 diabetic patients and control individuals. Non-obese first-degree relatives to type-2 diabetic patients (n = 20) and control (n = 11) men and women participated in this study. By this, we find that AQP7 is localized to the capillary endothelial cells within adipose tissue. We were unable to evidence a link between a low AQP7 abundance in SAT and genetic predisposition type-2 diabetes. Instead we demonstrate that physical training influences the expression of AQP7 in SAT in a gender-specific manner. Thus, women responds by increasing the abundance of AQP7 by 2.2-fold (p = 0.03) whereas in men a reduced expression is observed (p = 0.00009), resulting in a more than twofold higher abundance of AQP7 in women as compared with men. In conclusion, the adipose tissue glycerol channel, AQP7, is regulated in response to physical training in a gender-dependent manner in SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, Smith RJ, Smith SR (2011) Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care 34(6):1424–1430

    Article  PubMed  Google Scholar 

  2. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, Uchida S, Verkman AS (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 280(16):15493–15496

    Article  PubMed  CAS  Google Scholar 

  3. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A 102(31):10993–10998

    Article  PubMed  CAS  Google Scholar 

  4. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N, Nishida M, Nishizawa H, Matsuda M, Takahashi M, Hotta K, Nakamura T, Yamashita S, Tochino Y, Matsuzawa Y (2000) Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem 275(27):20896–20902

    Article  PubMed  CAS  Google Scholar 

  5. Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H, Matsuda M, Nagaretani H, Ouchi N, Hotta K, Kihara S, Kadowaki T, Funahashi T, Matsuzawa Y (2001) Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor gamma. J Biol Chem 276(51):48572–48579

    PubMed  CAS  Google Scholar 

  6. Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H, Maeda N, Matsuda M, Ouchi N, Kihara S, Kurachi Y, Funahashi T, Matsuzawa Y (2001) Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel. J Biol Chem 276(39):36251–36260

    Article  PubMed  CAS  Google Scholar 

  7. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y (2002) Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 269(7):1814–1826

    Article  PubMed  CAS  Google Scholar 

  8. Skowronski MT, Lebeck J, Rojek A, Praetorius J, Fuchtbauer EM, Frokiaer J, Nielsen S (2007) AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol 292(3):F956–F965

    Article  PubMed  CAS  Google Scholar 

  9. Maeda N, Funahashi T, Hibuse T, Nagasawa A, Kishida K, Kuriyama H, Nakamura T, Kihara S, Shimomura I, Matsuzawa Y (2004) Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proc Natl Acad Sci U S A 101(51):17801–17806

    Article  PubMed  CAS  Google Scholar 

  10. Matsumura K, Chang BH, Fujimiya M, Chen W, Kulkarni RN, Eguchi Y, Kimura H, Kojima H, Chan L (2007) Aquaporin 7 is a beta-cell protein and regulator of intraislet glycerol content and glycerol kinase activity, beta-cell mass, and insulin production and secretion. Mol Cell Biol 27(17):6026–6037

    Article  PubMed  CAS  Google Scholar 

  11. Sohara E, Rai T, Miyazaki J, Verkman AS, Sasaki S, Uchida S (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289(6):F1195–F1200

    Article  PubMed  CAS  Google Scholar 

  12. Miranda M, Escote X, Ceperuelo-Mallafre V, Alcaide MJ, Simon I, Vilarrasa N, Wabitsch M, Vendrell J (2010) Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 2 diabetes: differences and similarities between depots. J Clin Endocrinol Metab 95(7):3470–3479

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez A, Catalan V, Gomez-Ambrosi J, Garcia-Navarro S, Rotellar F, Valenti V, Silva C, Gil MJ, Salvador J, Burrell MA, Calamita G, Malagon MM, Fruhbeck G (2011) Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab 96(4):E586–E597

    Article  PubMed  CAS  Google Scholar 

  14. Catalan V, Gomez-Ambrosi J, Pastor C, Rotellar F, Silva C, Rodriguez A, Gil MJ, Cienfuegos JA, Salvador J, Vendrell J, Fruhbeck G (2008) Influence of morbid obesity and insulin resistance on gene expression levels of AQP7 in visceral adipose tissue and AQP9 in liver. Obes Surg 18(6):695–701

    Article  PubMed  Google Scholar 

  15. Ceperuelo-Mallafre V, Miranda M, Chacon MR, Vilarrasa N, Megia A, Gutierrez C, Fernandez-Real JM, Gomez JM, Caubet E, Fruhbeck G, Vendrell J (2007) Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes. J Clin Endocrinol Metab 92(9):3640–3645

    Article  PubMed  CAS  Google Scholar 

  16. Marrades MP, Milagro FI, Martinez JA, Moreno-Aliaga MJ (2006) Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem Biophys Res Commun 339(3):785–789

    Article  PubMed  CAS  Google Scholar 

  17. Miranda M, Ceperuelo-Mallafre V, Lecube A, Hernandez C, Chacon MR, Fort JM, Gallart L, Baena-Fustegueras JA, Simo R, Vendrell J (2009) Gene expression of paired abdominal adipose AQP7 and liver AQP9 in patients with morbid obesity: relationship with glucose abnormalities. Metabolism 58(12):1762–1768

    Article  PubMed  CAS  Google Scholar 

  18. Lindgren CM, Mahtani MM, Widen E, McCarthy MI, Daly MJ, Kirby A, Reeve MP, Kruglyak L, Parker A, Meyer J, Almgren P, Lehto M, Kanninen T, Tuomi T, Groop LC, Lander ES (2002) Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. Am J Hum Genet 70(2):509–516

    Article  PubMed  CAS  Google Scholar 

  19. Loos RJ, Katzmarzyk PT, Rao DC, Rice T, Leon AS, Skinner JS, Wilmore JH, Rankinen T, Bouchard C (2003) Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study. J Clin Endocrinol Metab 88(12):5935–5943

    Article  PubMed  CAS  Google Scholar 

  20. Prudente S, Flex E, Morini E, Turchi F, Capponi D, De CS, Tassi V, Guida V, Avogaro A, Folli F, Maiani F, Frittitta L, Dallapiccola B, Trischitta V (2007) A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes 56(5):1468–1474

    Article  PubMed  CAS  Google Scholar 

  21. Ostergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B, Schmitz O (2006) Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 290(5):E998–E1005

    Article  PubMed  Google Scholar 

  22. Hogan B, Constantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  23. Terris J, Ecelbarger CA, Nielsen S, Knepper MA (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol 271(2 Pt 2):F414–F422

    PubMed  CAS  Google Scholar 

  24. Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 269(5 Pt 2):F663–F672

    PubMed  CAS  Google Scholar 

  25. Rojek AM, Skowronski MT, Fuchtbauer EM, Fuchtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A 104(9):3609–3614

    Article  PubMed  CAS  Google Scholar 

  26. Nejsum LN, Elkjaer M, Hager H, Frokiaer J, Kwon TH, Nielsen S (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277(1):164–170

    Article  PubMed  CAS  Google Scholar 

  27. Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286(3):C529–C537

    Article  PubMed  CAS  Google Scholar 

  28. Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90(15):7275–7279

    Article  PubMed  CAS  Google Scholar 

  29. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91(14):6269–6273

    Article  PubMed  CAS  Google Scholar 

  30. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97(8):4386–4391

    Article  PubMed  CAS  Google Scholar 

  31. Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100(5):2945–2950

    Article  PubMed  CAS  Google Scholar 

  32. Mittendorfer B, Horowitz JF, Klein S (2001) Gender differences in lipid and glucose kinetics during short-term fasting. Am J Physiol Endocrinol Metab 281(6):E1333–E1339

    PubMed  CAS  Google Scholar 

  33. Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S (2010) Exercise for the management of type 2 diabetes: a review of the evidence. Acta Diabetol 47(1):15–22

    Article  PubMed  Google Scholar 

  34. Maarbjerg SJ, Sylow L, Richter EA (2011) Current understanding of increased insulin sensitivity after exercise—emerging candidates. Acta Physiol (Oxf) 202(3):323–335

    Article  CAS  Google Scholar 

  35. Gollisch KS, Brandauer J, Jessen N, Toyoda T, Nayer A, Hirshman MF, Goodyear LJ (2009) Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats. Am J Physiol Endocrinol Metab 297(2):E495–E504

    Article  PubMed  CAS  Google Scholar 

  36. Jensen MD (2002) Adipose tissue and fatty acid metabolism in humans. J R Soc Med 95(Suppl 42):3–7

    PubMed  CAS  Google Scholar 

  37. Sjoholm K, Palming J, Olofsson LE, Gummesson A, Svensson PA, Lystig TC, Jennische E, Brandberg J, Torgerson JS, Carlsson B, Carlsson LM (2005) A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab 90(4):2233–2239

    Article  PubMed  Google Scholar 

  38. Clore JN, Glickman PS, Helm ST, Nestler JE, Blackard WG (1989) Accelerated decline in hepatic glucose production during fasting in normal women compared with men. Metabolism 38(11):1103–1107

    Article  PubMed  CAS  Google Scholar 

  39. Davis SN, Galassetti P, Wasserman DH, Tate D (2000) Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J Clin Endocrinol Metab 85(1):224–230

    Article  PubMed  CAS  Google Scholar 

  40. Mittendorfer B, Horowitz JF, Klein S (2002) Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Am J Physiol Endocrinol Metab 283(1):E58–E65

    PubMed  CAS  Google Scholar 

  41. Ishibashi K, Sasaki S, Saito F, Ikeuchi T, Marumo F (1995) Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics 27(2):352–354

    Article  PubMed  CAS  Google Scholar 

  42. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244(1):268–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Helle Høyer, Inger Merete S. Paulsen, Bodil Kruse, Tina Drejer, Christian V. Westberg, Lene Trudsø and Annette Mengel for expert technical assistance. In addition, we would like to thank Emil Toft Brøndum and Peter Funch for kindly providing human adipose tissue samples. The Water and Salt Research Center at Aarhus University was established and funded by the Danish National Research Foundation (Danmarks Grundforskningsfond). J. L. was supported by grants from the Faculty of Health Sciences, Aarhus University. The study in relatives to type-2 diabetics was supported by grants from the Danish Diabetes Association, the Nordic Research Committee (Novo Nordisk Fonden), the Aarhus University Research Foundation, the Aage Louis Hansen Foundation and the Foundation for Promotion of Medical Science.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Lebeck.

Additional information

Communicated by Guido Pozza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebeck, J., Østergård, T., Rojek, A. et al. Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue. Acta Diabetol 49 (Suppl 1), 215–226 (2012). https://doi.org/10.1007/s00592-012-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0430-1

Keywords

Navigation