Skip to main content
Log in

Three types of sagittal alignment regarding compensation in asymptomatic adults: the contribution of the spine and lower limbs

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

A comprehensive understanding of normative sagittal profile is necessary for adult spinal deformity. Roussouly described four sagittal alignment types based on sacral slope, lumbar lordosis, and location of lumbar apex. However, the lower limb, a newly described component of spinal malalignment compensation, is missing from this classification. This study aims to propose a full-body sagittal profile classification in an asymptomatic population based on full-body imaging.

Methods

This is a retrospective analysis of a prospective single-center study of 116 asymptomatic volunteers. Cluster analysis including all sagittal parameters was first performed, and then ANOVA was performed between sub-clusters to eliminate the non-significantly different parameters. This loop was repeated until all parameters were significantly different between each sub-cluster.

Results

Three types of full-body sagittal profiles were finalized according to cluster analysis with ten radiographic parameters: hyperlordosis type (77 subjects), neutral type (28 subjects), and compensated type (11 subjects). Radiographic parameters included knee angle, pelvic shift, pelvic angle, PT, PI–LL, C7–S1 SVA, TPA, T1 slope, C2–C7 angle, and C2–C7 SVA. Age was significantly different across compensation types, while BMI and gender were comparable. Age-matched subjects were randomly selected with 11 subjects in each type. ANOVA analysis revealed that all parameters but PT and C2–C7 angle remained significantly different.

Conclusions

The current three compensation types of full-body sagittal profiles in asymptomatic adults included significant changes from cervical region to knee, indicating that subjects should be evaluated with full-length imaging. All three types exist regardless of age, but the distribution may vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwab F, Dubey A, Gamez L et al (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976) 30:1082–1085

    Article  Google Scholar 

  2. Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34:E599–E606. doi:10.1097/BRS.0b013e3181aad219

    Article  Google Scholar 

  3. Nielsen D, Hansen L, Dragsted C, et al (2014) Clinical correlation of SRS-Schwab classification with HRQOL measures in a prospective non-US cohort of ASD patients. In: Int. Meet. Adv. Spine Tech. (IMAST), July 16–19

  4. Schwab FJ, Ungar B, Blondel B et al (2012) Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976) 37:1077–1082. doi:10.1097/BRS.0b013e31823e15e2

    Article  Google Scholar 

  5. Lafage R, Schwab F, Challier V et al (2016) Defining spino-pelvic alignment thresholds: should operative goals in adult spinal deformity surgery account for age? Spine (Phila Pa 1976) 41:62–68. doi:10.1097/BRS.0000000000001171

    Article  Google Scholar 

  6. Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20(Suppl 5):1–10. doi:10.1007/s00586-011-1928-x

    Google Scholar 

  7. Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(Suppl 5):626–633. doi:10.1007/s00586-011-1930-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iyer S, Lenke LG, Nemani VM et al (2016) Variations in occipitocervical and cervicothoracic alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976). doi:10.1097/BRS.0000000000001644

    Google Scholar 

  9. Horton WC, Brown CW, Bridwell KH et al (2005) Is there an optimal patient stance for obtaining a lateral 36″ radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976) 30:427–433

    Article  Google Scholar 

  10. Ilharreborde B, Steffen JS, Nectoux E et al (2011) Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976) 36:E1306–E1313. doi:10.1097/BRS.0b013e3182293548

    Article  Google Scholar 

  11. Champain S, Benchikh K, Nogier A et al (2006) Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies. Eur Spine J 15:982–991. doi:10.1007/s00586-005-0927-1

    Article  CAS  PubMed  Google Scholar 

  12. Protopsaltis TS, Schwab FJ, Bronsard N et al (2014) The t1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96:1631–1640. doi:10.2106/JBJS.M.01459

    Article  PubMed  Google Scholar 

  13. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103. doi:10.1007/s005860050038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lafage V, Schwab FJ, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33:1572–1578. doi:10.1097/BRS.0b013e31817886a2

    Article  Google Scholar 

  15. Lafage R, Schwab F, Challier V et al (2016) Defining spino-pelvic alignment thresholds. Spine (Phila Pa 1976) 41:62–68. doi:10.1097/BRS.0000000000001171

    Article  Google Scholar 

  16. Hasegawa K, Okamoto M, Hatsushikano S et al (2016) Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J 25:3675–3686. doi:10.1007/s00586-016-4702-2

    Article  PubMed  Google Scholar 

  17. Schwab F, Lafage R, Glassman S et al (2015) Age-adjusted alignment goals have the potential to reduce proximal junctional kyphosis. Spine J 15(10):S137. doi:10.1016/j.spinee.2015.07.135

    Google Scholar 

  18. Barrey CC, Roussouly P, Le Huec J-CC et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841. doi:10.1007/s00586-013-3030-z

    Article  PubMed  Google Scholar 

  19. Diebo BG, Ferrero E, Lafage R et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40:642–649. doi:10.1097/BRS.0000000000000844

    Article  Google Scholar 

  20. Ferrero E, Liabaud B, Challier V et al (2015) Role of pelvic translation and lower-extremity compensation to maintain gravity line position in spinal deformity. J Neurosurg Spine. doi:10.3171/2015.5.SPINE14989

    PubMed  Google Scholar 

  21. Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 25:3630–3637. doi:10.1007/s00586-016-4485-5

    Article  PubMed  Google Scholar 

  22. Lafage R, Liabaud B, Diebo B et al (2016) Defining the role of lower limbs in compensating for sagittal malalignment. Presented at AAOS, Orlando, FL

  23. Buckland AJ, Vira S, Oren JH et al (2016) When is compensation for lumbar spinal stenosis a clinical sagittal plane deformity? Spine J 16:971–981. doi:10.1016/j.spinee.2016.03.047

    Article  PubMed  Google Scholar 

  24. Kent P, Jensen RK, Kongsted A (2014) A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB. BMC Med Res Methodol 14:113. doi:10.1186/1471-2288-14-113

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dolphens M, Cagnie B, Coorevits P et al (2013) Classification system of the sagittal standing alignment in young adolescent girls. Eur Spine J. doi:10.1007/s00586-013-2952-9

    Google Scholar 

  26. Sangeux M, Rodda J, Graham HK (2015) Sagittal gait patterns in cerebral palsy: the plantarflexor–knee extension couple index. Gait Posture 41:586–591. doi:10.1016/j.gaitpost.2014.12.019

    Article  PubMed  Google Scholar 

  27. Hresko MT, Labelle H, Roussouly P, Berthonnaud E (2007) Classification of high-grade spondylolistheses based on pelvic version and spine balance: possible rationale for reduction. Spine (Phila Pa 1976) 32:2208–2213

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript submitted does not contain information about medical device(s)/drug(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Lafage.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Lafage, R., Liabaud, B. et al. Three types of sagittal alignment regarding compensation in asymptomatic adults: the contribution of the spine and lower limbs. Eur Spine J 27, 397–405 (2018). https://doi.org/10.1007/s00586-017-5159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5159-7

Keywords

Navigation