Skip to main content

Advertisement

Log in

Duration-dependent influence of dynamic torsion on the intervertebral disc: an intact disc organ culture study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion–compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading.

Methods

Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz.

Results

Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion–compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion–compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group.

Conclusions

Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alimasi W, Sawaji Y, Endo K, Yorifuji M, Suzuki H, Kosaka T, Shishido T, Yamamoto K (2013) Regulation of nerve growth factor by anti-inflammatory drugs, a steroid, and a selective cyclooxygenase 2 inhibitor in human intervertebral disc cells stimulated with interleukin-1. Spine (Phila Pa 1976) 38(17):1466–1472. doi:10.1097/BRS.0b013e318294edb1

    Article  Google Scholar 

  2. Aultman CD, Drake JD, Callaghan JP, McGill SM (2004) The effect of static torsion on the compressive strength of the spine: an in vitro analysis using a porcine spine model. Spine (Phila Pa 1976) 29(15):E304–E309

    Article  Google Scholar 

  3. Barbir A, Godburn KE, Michalek AJ, Lai A, Monsey RD, Iatridis JC (2010) Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Spine (Phila Pa 1976) 36(8):607–614. doi:10.1097/BRS.0b013e3181d9b58b

    Article  Google Scholar 

  4. Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 16(1):28–37. doi:10.1016/S0268-0033(00)00063-2

    Article  CAS  Google Scholar 

  5. Chan SC, Ferguson SJ, Gantenbein-Ritter B (2011) The effects of dynamic loading on the intervertebral disc. Eur Spine J 20(11):1796–1812. doi:10.1007/s00586-011-1827-1

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B (2011) Biological response of the intervertebral disc to repetitive short term cyclic torsion. Spine (Phila Pa 1976) 36(24):2021–2030. doi:10.1097/BRS.0b013e318203aea5

    Article  Google Scholar 

  7. Chan SCW, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B (2013) Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS One 8(8):e72489. doi:10.1371/journal.pone.0072489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen J, Yan W, Setton LA (2004) Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 22(7):573–583. doi:10.1016/j.matbio.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  9. Drake JD, Aultman CD, McGill SM, Callaghan JP (2005) The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. Clin Biomech (Bristol, Avon) 20(10):1038–1045. doi:10.1016/j.clinbiomech.2005.06.007

  10. Elliott B, Khangure M (2002) Disk degeneration and fast bowling in cricket: an intervention study. Med Sci Sports Exerc 34(11):1714–1718. doi:10.1249/01.MSS.0000036863.74140.90

    Article  PubMed  Google Scholar 

  11. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2):173–177. doi:10.1016/0304-4165(86)90306-5

    Article  CAS  PubMed  Google Scholar 

  12. Gantenbein B, Illien-Jünger S, Chan SC, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S (2015) Organ culture bioreactors-platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 10(4):339. doi:10.2174/1574888X10666150312102948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gantenbein-Ritter B, Potier E, Zeiter S, van der Werf M, Sprecher CM, Ito K (2008) Accuracy of three techniques to determine cell viability in 3D tissues or scaffolds. Tissue Eng Part C Methods 14(4):353–358. doi:10.1089/ten.tec.2008.0313

    Article  CAS  PubMed  Google Scholar 

  14. Gawri R, Moir J, Ouellet J, Beckman L, Steffen T, Roughley P, Haglund L (2014) Physiological loading can restore the proteoglycan content in a model of early IVD degeneration. PLoS One 9(7):e101233. doi:10.1371/journal.pone.0101233

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gawri R, Rosenzweig DH, Krock E, Ouellet JA, Stone LS, Quinn TM, Haglund L (2014) High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Res Ther 16(1):R21. doi:10.1186/ar4449

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gluck GS, Bendo JA, Spivak JM (2008) The lumbar spine and low back pain in golf: a literature review of swing biomechanics and injury prevention. Spine J 8(5):778–788. doi:10.1016/j.spinee.2007.07.388

    Article  PubMed  Google Scholar 

  17. Hangai M, Kaneoka K, Hinotsu S, Shimizu K, Okubo Y, Miyakawa S, Mukai N, Sakane M, Ochiai N (2009) Lumbar intervertebral disk degeneration in athletes. Am J Sports Med 37(1):149–155. doi:10.1177/0363546508323252

    Article  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  19. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976) 25(12):1477–1483

  20. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Phila Pa 1976) 23(23):2493–2506

  21. MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23(5):1120–1127. doi:10.1016/j.orthres.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  22. Malandrino A, Noailly J, Lacroix D (2011) The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol 7(8):e1002112. doi:10.1371/journal.pcbi.1002112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Masuoka K, Michalek AJ, MacLean JJ, Stokes IA, Iatridis JC (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine (Phila Pa 1976) 32(18):1974–1979. doi:10.1097/BRS.0b013e318133d591

  24. Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Tamaki T (1999) Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine (Phila Pa 1976) 24(4):315–s319

  25. McMillan DW, Garbutt G, Adams MA (1996) Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 55(12):880–887. doi:10.1136/ard.55.12.880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mundt DJ, Kelsey JL, Golden AL, Panjabi MM, Pastides H, Berg AT, Sklar J, Hosea T (1993) An epidemiologic study of sports and weight lifting as possible risk factors for herniated lumbar and cervical discs. The Northeast Collaborative Group on Low Back Pain. Am J Sports Med 21(6):854–860

    Article  CAS  PubMed  Google Scholar 

  27. O’Connell GD, Johannessen W, Vresilovic EJ, Elliott DM (2007) Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine (Phila Pa 1976) 32(25):2860–2868. doi:10.1097/BRS.0b013e31815b75fb

  28. Paul CP, Schoorl T, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG (2013) Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 8(4):e62411. doi:10.1371/journal.pone.0062411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rainville J, Hartigan C, Martinez E, Limke J, Jouve C, Finno M (2004) Exercise as a treatment for chronic low back pain. Spine J 4(1):106–115. doi:10.1016/S1529-9430(03)00174-8

    Article  PubMed  Google Scholar 

  30. Ramakrishnan PS, Hong J, Martin JA, Kurriger GL, Buckwalter JA, Lim TH (2011) Biomechanical disc culture system: feasibility study using rat intervertebral discs. Proc Inst Mech Eng H 225(6):611–620

    Article  CAS  PubMed  Google Scholar 

  31. Reagh J, Vizel S, Wills CR, di Blasi T, Malandrino A, Loeser F, Chan SCW, Gantenbein B, Noaily J (2015) Multi-scale simulation of intervertebral disc biophysics under bioreactor conditions by coupling finite element and agent-based models. Czech Republic, Prague

    Google Scholar 

  32. Setton LA, Chen J (2004) Cell mechanics and mechanobiology in the intervertebral disc. Spine (Phila Pa 1976) 29(23):2710–2723

  33. Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88(Suppl 2):52–57. doi:10.2106/JBJS.F.00001

    Article  PubMed  Google Scholar 

  34. Sowa G, Agarwal S (2008) Cyclic tensile stress exerts a protective effect on intervertebral disc cells. Am J Phys Med Rehabil 87(7):537–544. doi:10.1097/PHM.0b013e31816197ee

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sowa G, Coelho P, Vo N, Bedison R, Chiao A, Davies C, Studer R, Kang J (2011) Determination of annulus fibrosus cell response to tensile strain as a function of duration, magnitude, and frequency. J Orthop Res 29(8):1275–1283. doi:10.1002/jor.21388

    Article  PubMed Central  PubMed  Google Scholar 

  36. Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, Iatridis JC (2011) Complex loading affects intervertebral disc mechanics and biology. Osteoarthr Cartil 19(8):1011–1018. doi:10.1016/j.joca.2011.04.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wang DL, Jiang SD, Dai LY (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 32(23):2521–2528. doi:10.1097/BRS.0b013e318158cb61

  38. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27(9):1235–1242. doi:10.1002/jor.20867

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zhu Q, Jackson AR, Gu WY (2012) Cell viability in intervertebral disc under various nutritional and dynamic loading conditions: 3d finite element analysis. J Biomech 45(16):2769–2777. doi:10.1016/j.jbiomech.2012.08.044

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by funds from the Swiss National Science Foundation (project # 310030_153411), the Orthopedic Department of the Insel University Hospital of Bern and the Lindenhof foundation (project # 14-03-F). We thank Dr Stefan Bauer for his contribution on the digital data processing. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha C. W. Chan.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, S.C.W., Walser, J., Ferguson, S.J. et al. Duration-dependent influence of dynamic torsion on the intervertebral disc: an intact disc organ culture study. Eur Spine J 24, 2402–2410 (2015). https://doi.org/10.1007/s00586-015-4140-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4140-6

Keywords

Navigation