Skip to main content
Log in

Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Thermoreversible hydrogels have potential in spine research as they provide easy injectability and mild gelling mechanism (by physical cross-link). The purpose of this study was to assess the potential of thermoreversible hyaluronan-based hydrogels (HA-pNIPAM) (pNIPAM Mn = 10, 20, 35 × 103 g mol−1) as nucleus pulposus cells (NPC) carrier.

Materials and methods

Cytocompatibility (WST-1 assay), viability (trypan blue), morphology (toluidine blue), sulphated glycosaminoglycan synthesis (DMMB assay) and gene expression profile (real-time PCR) of bovine NPC cultured in HA-pNIPAM were followed for 1 week and compared to alginate gel bead cultures. The injectability and cell survival in a whole disc organ culture model were assessed up to day 7.

Results

All HA, HA-pNIPAM and their degradation products were cytocompatible to NPC. HA-pNIPAM hydrogels with no volume change upon gelling maintained NPC viability and characteristic rounded morphology. Glycosaminoglycan synthesis was similar in HA-pNIPAM and alginate gels. Following NPC expansion, both gels induced re-differentiation toward the NPC phenotype. Significant differences between the two gels were found for COLI, COLII, HAS1, HAS2 and ADAMTS4 but not for MMPs and TIMPs. Higher expression of hyaluronan synthases (HAS1, HAS2) and lower expression of COLI and COLII mRNA were noted in cells cultured in HA-pNIPAM (pNIPAM = 20 × 103g mol−1). NPC suspension in HA-pNIPAM was injectable through a 22-G needle without loss of cell viability. Ex vivo, NPC viability was maintained in HA-pNIPAM for 1 week.

Conclusion

A HA-pNIPAM composition suitable for nucleus pulposus repair that provides an injectable carrier for NPC, maintains their phenotype and promotes extracellular matrix generation was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schizas C, Kulik G, Kosmopoulos V (2010) Disc degeneration: current surgical options. Eur Cell Mater 20:306–315

    PubMed  CAS  Google Scholar 

  2. Grad S, Alini M, Eglin D, Sakai D, Mochida J, Mahor S et al (2010) Cells and biomaterials for intervertebral disc regeneration. In: Athanasiou KA (ed) Synthesis lectures on tissue engineering, vol 2. Morgan & Claypool, San Rafael, pp 1–104

  3. Masuda K (2008) Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur Spine J 17(Suppl 4):441–451

    Article  PubMed  Google Scholar 

  4. Masuda K, Lotz JC (2010) New challenges for intervertebral disc treatment using regenerative medicine. Tissue Eng Part B Rev 16:147–158

    Article  PubMed  Google Scholar 

  5. Nishida K, Suzuki T, Kakutani K, Yurube T, Maeno K, Kurosaka M et al (2008) Gene therapy approach for disc degeneration and associated spinal disorders. Eur Spine J 17(Suppl 4):459–466

    Article  PubMed  Google Scholar 

  6. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  PubMed  CAS  Google Scholar 

  7. Sakai D (2008) Future perspectives of cell-based therapy for intervertebral disc disease. Eur Spine J 17(Suppl 4):452–458

    Article  PubMed  Google Scholar 

  8. Watanabe T, Sakai D, Yamamoto Y, Iwashina T, Serigano K, Tamura F et al (2010) Human nucleus pulposus cells significantly enhanced biological properties in a coculture system with direct cell-to-cell contact with autologous mesenchymal stem cells. J Orthop Res 28:623–630

    PubMed  CAS  Google Scholar 

  9. Vadala G, Studer RK, Sowa G, Spiezia F, Iucu C, Denaro V et al (2008) Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine (Phila Pa 1976) 33:870–876

    Article  Google Scholar 

  10. Hiyama A, Mochida J, Sakai D (2008) Stem cell applications in intervertebral disc repair. Cell Mol Biol (Noisy-le-grand) 54:24–32

    CAS  Google Scholar 

  11. Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K et al (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26:589–600

    Article  PubMed  CAS  Google Scholar 

  12. Miyamoto T, Muneta T, Tabuchi T, Matsumoto K, Saito H, Tsuji K et al (2010) Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther 12:R206

    Article  PubMed  Google Scholar 

  13. Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takakura Y (2010) Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila Pa 1976) 35:E475–E480

    Google Scholar 

  14. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC et al (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32:430–434

    Article  PubMed  Google Scholar 

  15. Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K et al (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24:3531–3541

    Article  PubMed  CAS  Google Scholar 

  16. Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M et al (2006) Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27:335–345

    Article  PubMed  CAS  Google Scholar 

  17. Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine (Phila Pa 1976) 28:446–454

    Google Scholar 

  18. Calderon L, Collin E, Velasco-Bayon D, Murphy M, O’Halloran D, Pandit A (2010) Type II collagen–hyaluronan hydrogel–a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater 20:134–148

    PubMed  CAS  Google Scholar 

  19. Cloyd JM, Malhotra NR, Weng L, Chen W, Mauck RL, Elliott DM (2007) Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur Spine J 16:1892–1898

    Article  PubMed  Google Scholar 

  20. Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS (2008) An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 29:438–447

    Article  PubMed  CAS  Google Scholar 

  21. Su WY, Chen YC, Lin FH (2010) Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater 6:3044–3055

    Article  PubMed  CAS  Google Scholar 

  22. Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6:1026–1039

    Article  PubMed  CAS  Google Scholar 

  23. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M (2006) The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27:388–396

    Article  PubMed  CAS  Google Scholar 

  24. Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2:856–863

    Article  PubMed  CAS  Google Scholar 

  25. Mortisen D, Peroglio M, Alini M, Eglin D (2010) Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules 11:1261–1272

    Article  PubMed  CAS  Google Scholar 

  26. Zeiter S, der WM, Ito K (2009) The fate of bovine bone marrow stromal cells in hydrogels: a comparison to nucleus pulposus cells and articular chondrocytes. J Tissue Eng Regen Med 3:310–320

    Article  PubMed  CAS  Google Scholar 

  27. Gantenbein-Ritter B, Benneker LM, Alini M, Grad S (2011) Differential response of human bone marrow stromal cells to either TGF-β(1) or rhGDF-5. Eur Spine J 20:962–971

    Article  PubMed  Google Scholar 

  28. Lee CR, Grad S, MacLean JJ, Iatridis JC, Alini M (2005) Effect of mechanical loading on mRNA levels of common endogenous controls in articular chondrocytes and intervertebral disk. Anal Biochem 341:372–375

    Article  PubMed  CAS  Google Scholar 

  29. Lapcik L Jr, Lapcik L, De Smedt S, Demeester J, Chabrecek P (1998) Hyaluronan: preparation, structure, properties, and applications. Chem Rev 98:2663–2684

    Article  PubMed  CAS  Google Scholar 

  30. Ibusuki S, Iwamoto Y, Matsuda T (2003) System-engineered cartilage using poly(N-isopropylacrylamide)-grafted gelatin as in situ-formable scaffold: in vivo performance. Tissue Eng 9:1133–1142

    Article  PubMed  CAS  Google Scholar 

  31. Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T (1998) Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J Control Release 55:87–98

    Article  PubMed  CAS  Google Scholar 

  32. Masters KS, Shah DN, Leinwand LA, Anseth KS (2005) Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26:2517–2525

    Article  PubMed  CAS  Google Scholar 

  33. Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M et al (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6:1968–1977

    Article  PubMed  CAS  Google Scholar 

  34. Chung C, Erickson IE, Mauck RL, Burdick JA (2008) Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng Part A 14:1121–1131

    Article  PubMed  CAS  Google Scholar 

  35. Recklies AD, White C, Melching L, Roughley PJ (2001) Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J 354:17–24

    Article  PubMed  CAS  Google Scholar 

  36. Ohno S, Im HJ, Knudson CB, Knudson W (2005) Hyaluronan oligosaccharide-induced activation of transcription factors in bovine articular chondrocytes. Arthritis Rheum 52:800–809

    Article  PubMed  CAS  Google Scholar 

  37. Yoon ST (2005) Molecular therapy of the intervertebral disc. Spine J 5:S280–S286

    Article  Google Scholar 

  38. Chen WH, Liu HY, Lo WC, Wu SC, Chi CH, Chang HY et al (2009) Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials 30:5523–5533

    Article  PubMed  CAS  Google Scholar 

  39. Chan SCW, Gantenbein-Ritter B, Leung VYL, Chan D, Cheung KMC, Ito K (2010) Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J 10:486–496

    Article  PubMed  Google Scholar 

  40. Illien-Junger S, Gantenbein-Ritter B, Grad S, Lezuo P, Ferguson SJ, Alini M et al (2010) The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine (Phila Pa 1976) 35:1744–1752

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Mr. Andrea Oswald for his help in the gene expression analyses and Mr. Markus Glarner for assistance with the hydrogel synthesis.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eglin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peroglio, M., Grad, S., Mortisen, D. et al. Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation. Eur Spine J 21 (Suppl 6), 839–849 (2012). https://doi.org/10.1007/s00586-011-1976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1976-2

Keywords

Navigation