Skip to main content
Log in

Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The capacity of mesenchymal stem cells (MSCs) to differentiate into intervertebral disc (IVD)-like cells has been well described, but their ability to modulate the inflammatory processes in the IVD remains unclear. We found that tissue obtained by discectomy of degenerated and post-traumatic IVD contains significant amounts of IgG antibodies, a sign of lymphocyte infiltration. Further we investigated whether MSCs in vitro, which were characterized for their multilineage differentiation potential and may have immunomodulatory effects on IVD fragments. IVD fragments were co-cultured in contact with peripheral blood lymphocytes (PBLs) and MSCs, and as functional controls we used contact co-cultures of PBLs stimulated with pokeweed mitogen (2.5 μg/mL) and MSCs. The time course of lymphocyte proliferation (Alamar Blue), IgG (ELISA) and gene expression (RT-PCR) of anti-inflammatory cytokines (TGF-β1, IL-10) by MSCs and pro-inflammatory molecules (IL-1α, IL-1β and TNF-α) by the IVD fragments were analyzed. Depending on the response to the presence of MSCs, the IVD fragments (n = 13) were divided in two groups: responders (n = 9), where inflammation was inhibited by MSCs and non-responders (n = 4), where MSCs did not decrease inflammation. At 1 week in co-culture, MSCs reduced significantly the IgG production in the IVD responders group to 69% and PBLs proliferation to 57% of the control. MSCs expression of the anti-inflammatory TGF-β1 increased with time, while IL-10 was expressed only at day 1. IVD gene expression of TNF-α decreased constantly, whereas IL-1α and IL-1β expression increased. In conclusion, these data suggest that MSCs may modulate disc-specific inflammatory and pain status and aid regeneration of the host tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pye SR, Reid DM, Smith R, Adams JE, Nelson K, Silman AJ, O’Neill TW (2004) Radiographic features of lumbar disc degeneration and self-reported back pain. J Rheumatol 31:753–758. doi:0315162X-31-753

    PubMed  Google Scholar 

  2. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164:915–924

    Article  PubMed  CAS  Google Scholar 

  3. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 20:1307–1314

    CAS  Google Scholar 

  4. Freemont AJ, Peacock TE, Goupille P, Hoyland JA, O’Brien J, Jayson MI (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350:178–181. doi:S0140673697021351

    Article  PubMed  CAS  Google Scholar 

  5. Johnson WE, Evans H, Menage J, Eisenstein SM, El Haj A, Roberts S (2001) Immunohistochemical detection of Schwann cells in innervated and vascularized human intervertebral discs. Spine (Phila Pa 1976) 26:2550–2557

    CAS  Google Scholar 

  6. Shamji MF, Setton LA, Jarvis W, So S, Chen J, Jing L, Bullock R, Isaacs RE, Brown C, Richardson WJ (2010) Pro-inflammatory cytokine expression profile in degenerative and herniated human intervertebral disc tissues. Arthritis Rheum 62(7):1974–1982. doi:10.1002/art.27444

    PubMed  CAS  Google Scholar 

  7. Paesold G, Nerlich AG, Boos N (2007) Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 16:447–468. doi:10.1007/s00586-006-0220-y

    Article  PubMed  Google Scholar 

  8. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R745. doi:10.1186/ar1732

    Article  PubMed  CAS  Google Scholar 

  9. Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine (Phila Pa 1976) 30:44–53. doi:00007632-200501010-00009 (discussion 54)

  10. Le Maitre CL, Freemont AJ, Hoyland JA (2006) A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration. Int J Exp Pathol 87:17–28. doi:10.1111/j.0959-9673.2006.00449.x

    Article  PubMed  CAS  Google Scholar 

  11. Hoyland JA, Le Maitre C, Freemont AJ (2008) Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology (Oxf) 47:809–814. doi:10.1093/rheumatology/ken056

    Article  CAS  Google Scholar 

  12. Seguin CA, Pilliar RM, Roughley PJ, Kandel RA (2005) Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine (Phila Pa 1976) 30:1940–1948. doi:00007632-200509010-00006

    Google Scholar 

  13. Le Maitre CL, Hoyland JA, Freemont AJ (2007) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFalpha expression profile. Arthritis Res Ther 9:R77. doi:10.1186/ar2275

    Article  PubMed  Google Scholar 

  14. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100(Suppl 1):11917–11923. doi:10.1073/pnas.1834138100

    Article  PubMed  CAS  Google Scholar 

  15. Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82:241–243. doi:10.1038/sj.clpt.6100313

    Article  PubMed  CAS  Google Scholar 

  16. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937. doi:10.1073/pnas.132252399

    Article  PubMed  CAS  Google Scholar 

  17. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354:700–706. doi:10.1016/j.bbrc.2007.01.045

    Article  PubMed  CAS  Google Scholar 

  18. Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N, Sensebe L, Zhang Y, Gorin NC, Thierry D, Fouillard L (2007) Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Exp 13:217–226

    Article  Google Scholar 

  19. Horwitz EM, Prather WR (2009) Cytokines as the major mechanism of mesenchymal stem cell clinical activity: expanding the spectrum of cell therapy. Isr Med Assoc J 11:209–211

    PubMed  Google Scholar 

  20. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20. doi:1176

    Article  PubMed  CAS  Google Scholar 

  21. Wei XF, Liu KY (2004) Inhibitory effects of human bone marrow mesenchymal stem cells and cord blood mononuclear cells on mixed lymphocyte response and PHA induction transformation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 12:261–264. doi:1009-2137(2004)03-0261-04

    PubMed  Google Scholar 

  22. Xuan M, Qiu GQ, Xie XB (2006) [Immune modulatory effects of mesenchymal stem cells on T lymphocytes in mixed lymphocyte culture]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 22:433–435

    PubMed  CAS  Google Scholar 

  23. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219. doi:10.1182/blood-2004-07-2921

    Article  PubMed  CAS  Google Scholar 

  24. Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 265:134–139. doi:10.1006/bbrc.1999.1620

    Article  PubMed  CAS  Google Scholar 

  25. Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RD, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH (2009) Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol. doi:10.1016/j.cellimm.2009.10.006

  26. Kohyama K, Saura R, Doita M, Mizuno K (2000) Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration. Kobe J Med Sci 46:283–295

    PubMed  CAS  Google Scholar 

  27. Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH (1997) Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine (Phila Pa 1976) 22:1065–1073

    CAS  Google Scholar 

  28. Gruber HE, Deepe R, Hoelscher GL, Ingram JA, Norton HJ, Scannell B, Loeffler BJ, Zinchenko N, Hanley EN, Tapp H (2010) Human adipose-derived mesenchymal stem cells: direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng Part A 16:2843–2860. doi:10.1089/ten.TEA.2009.0709

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Swiss Paraplegic Foundation. We thank Swiss Paraplegic Center for Clinical Support, Dr. Angela Frotzler for statistical advice and Dr. David Magnani for scientific assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jivko V. Stoyanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolo, A., Thiede, T., Aebli, N. et al. Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro. Eur Spine J 20, 592–603 (2011). https://doi.org/10.1007/s00586-010-1662-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1662-9

Keywords

Navigation