Skip to main content
Log in

A review of methods for quantitative evaluation of axial vertebral rotation

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Quantitative evaluation of axial vertebral rotation is essential for the determination of reference values in normal and pathological conditions and for understanding the mechanisms of the progression of spinal deformities. However, routine quantitative evaluation of axial vertebral rotation is difficult and error-prone due to the limitations of the observer, characteristics of the observed vertebral anatomy and specific imaging properties. The scope of this paper is to review the existing methods for quantitative evaluation of axial vertebral rotation from medical images along with all relevant publications, which may provide a valuable resource for studying the existing methods or developing new methods and evaluation strategies. The reviewed methods are divided into the methods for evaluation of axial vertebral rotation in 2D images and the methods for evaluation of axial vertebral rotation in 3D images. Key evaluation issues and future considerations, supported by the results of the overview, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aaro S, Dahlborn M (1981) Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer-tomography. Spine 6:460–467. doi:10.1097/00007632-198109000-00007

    Article  PubMed  CAS  Google Scholar 

  2. Adam C, Askin G (2006) Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine 31:E80–E83. doi:10.1097/01.brs.0000197653.64796.9d

    Article  PubMed  Google Scholar 

  3. André B, Dansereau J, Labelle H (1992) Effect of radiographic landmark identification errors on the accuracy of three-dimensional reconstruction of the human spine. Med Biol Eng Comput 30:569–575. doi:10.1007/BF02446787

    Article  PubMed  Google Scholar 

  4. André B, Dansereau J, Labelle H (1994) Optimized vertical stereo base radiographic setup for the clinical threedimensional reconstruction of the human spine. J Biomech 27:1023–1035. doi:10.1016/0021-9290(94)90219-4

    Article  PubMed  Google Scholar 

  5. Aronsson D, Stokes I, Ronchetti P, Richards B (1996) Surgical correction of vertebral axial rotation in adolescent idiopathic scoliosis: prediction by lateral bending films. J Spinal Disord Tech 9:214–219

    CAS  Google Scholar 

  6. Aubin C, Dansereau J, Parent F, Labelle H, de Guise J (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618. doi:10.1007/BF02510968

    Article  PubMed  CAS  Google Scholar 

  7. Aubin C, Dansereau J, Petit Y, Parent F, De Guise J, Labelle H (1998) Three dimensional measurement of wedged scoliotic vertebrae and intervertebral disks. Eur Spine J 7:59–65. doi:10.1007/s005860050029

    Article  PubMed  CAS  Google Scholar 

  8. Barsanti C, de Bari A, Covino B (1990) The torsion meter: a critical review. J Pediatr Orthop 10:527–531

    PubMed  CAS  Google Scholar 

  9. Benameur S, Mignotte M, Labelle H, De Guise J (2005) A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Trans Biomed Eng 52:2041–2057. doi:10.1109/TBME.2005.857665

    Article  PubMed  Google Scholar 

  10. Benson D, Schultz A, Dewald R (1976) Roentgenographic evaluation of vertebral rotation. J Bone Jt Surg Am 58:1125–1129

    CAS  Google Scholar 

  11. Bifulco P, Sansone M, Cesarelli M, Allen R, Bracale M (2002) Estimation of out-of-plane vertebra rotations on radiographic projections using CT data: a simulation study. Med Eng Phys 24:295–300. doi:10.1016/S1350-4533(02)00021-8

    Article  PubMed  Google Scholar 

  12. Birchall D, Hughes D, Gregson B, Williamson B (2005) Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur Spine J 14:123–129. doi:10.1007/s00586-004-0705-5

    Article  PubMed  Google Scholar 

  13. Birchall D, Hughes D, Hindle J, Robinson L, Williamson J (1997) Measurement of vertebral rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging. Spine 22:2403–2407. doi:10.1097/00007632-199710150-00016

    Article  PubMed  CAS  Google Scholar 

  14. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27:557–568. doi:10.1109/TMI.2007.911474

    Article  PubMed  CAS  Google Scholar 

  15. Brown R, Burstein A, Nash C, Schock C (1976) Spinal analysis using a three-dimensional radiographic technique. J Biomech 9:355–365. doi:10.1016/0021-9290(76)90113-5

    Article  PubMed  CAS  Google Scholar 

  16. Bunnell W (1985) Vertebral rotation: a simple method of measurement on routine radiographs. Orthop Trans 9:114

    Google Scholar 

  17. Chen YT, Wang MS (2004) Three-dimensional reconstruction and fusion for multi-modality spinal images. Comput Med Imaging Graph 28:21–31. doi:10.1016/j.compmedimag.2003.08.001

    Article  PubMed  Google Scholar 

  18. Chi WM, Cheng CW, Yeh WC, Chuang SC, Chang TS, Chen JH (2006) Vertebral axial rotation measurement method. Comput Methods Programs Biomed 81:8–17

    PubMed  Google Scholar 

  19. Cholewicki J, Crisco J, Oxland T, Yamamoto I, Panjabi M (1996) Effects of posture and structure on threedimensional coupled rotations in the lumbar spine: a biomechanical analysis. Spine 21:2421–2428. doi:10.1097/00007632-199611010-00003

    Article  PubMed  CAS  Google Scholar 

  20. Cobb J (1948) Outline for the study of scoliosis. Am Acad Orthop Surg Instr Course Lect 5:261–275

    Google Scholar 

  21. Coetsier M, Vercauteren M, Moerman P (1977) A new radiographic method for measuring vertebral rotation in scoliosis. Acta Orthop Belg 43:598–605

    PubMed  CAS  Google Scholar 

  22. Cyteval C, Thomas E, Picot M, Derieffy P, Blotman F, Taourel P (2002) Normal vertebral body dimensions: a new measurement method using MRI. Osteoporos Int 13:468–473. doi:10.1007/s001980200056

    Article  PubMed  CAS  Google Scholar 

  23. Dang N, Moreau M, Hill D, Mahood J, Raso J (2005) Intra-observer reproducibility and interobserver reliability of the radiographic parameters in the Spinal Deformity Study Group’s AIS radiographic measurement manual. Spine 30:1064–1069. doi:10.1097/01.brs.0000160840.51621.6b

    Article  PubMed  Google Scholar 

  24. de Bruijne M, Lund M, Tankó L, Pettersen PMN (2007) Quantitative vertebral morphometry using neighbor conditional shape models. Med Image Anal 11:503–512. doi:10.1016/j.media.2007.07.004

    Article  PubMed  Google Scholar 

  25. Drerup B (1984) Principles of measurement of vertebral rotation from frontal projections of the pedicles. J Biomech 17:923–935. doi:10.1016/0021-9290(84)90005-8

    Article  PubMed  CAS  Google Scholar 

  26. Drerup B (1985) Improvements in measuring vertebral rotation from the projections of the pedicles. J Biomech 18:369–378. doi:10.1016/0021-9290(85)90292-1

    Article  PubMed  CAS  Google Scholar 

  27. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part I: measurement of position and orientation of vertebrae and assessment of clinical shape parameters. J Biomech 25:1357–1362. doi:10.1016/0021-9290(92)90291-8

    Article  PubMed  CAS  Google Scholar 

  28. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part II: relations between lateral deviation, lateral tilt and axial rotation of vertebrae. J Biomech 25:1443–1450. doi:10.1016/0021-9290(92)90057-8

    Article  PubMed  CAS  Google Scholar 

  29. Drerup B, Hierholzer E (1996) Assessment of scoliotic deformity from back shape asymmetry using an improved mathematical model. Clin Biomech (Bristol, Avon) 11:376–383. doi:10.1016/0268-0033(96)00025-3

    Article  Google Scholar 

  30. Dumas R, Le Bras A, Champain N, Savidan M, Mitton D, Kalifa G, Steip JP, De Guise J, Skalli W (2004) Validation of the relative 3D orientation of vertebrae reconstructed by bi-planar radiography. Med Eng Phys 26:415–422. doi:10.1016/j.medengphy.2004.02.004

    Article  PubMed  CAS  Google Scholar 

  31. Dumas R, Steib JP, Mitton D, Lavaste F, Skalli W (2003) Three-dimensional quantitative segmental analysis of scoliosis corrected by the in situ contouring technique. Spine 28:1158–1162. doi:10.1097/00007632-200306010-00014

    Article  PubMed  Google Scholar 

  32. Ecker M, Betz R, Trent P, Mahboubi S, Mesgarzadeh M, Bonakdapour A, Drummond D, Clancy M (1988) Computer tomography evaluation of Cotrel-Dubousset instrumentation in idiopathic scoliosis. Spine 13:1141–1144. doi:10.1097/00007632-198810000-00015

    Article  PubMed  CAS  Google Scholar 

  33. Fait M, Janovec M (1970) Establishing the rotation angle in the vertebrae. Scr Med (Brno) 43:207–215

    Google Scholar 

  34. Gangnet N, Dumas R, Pomero V, Mitulescu A, Skalli W, Vital JM (2006) Three-dimensional spinal and pelvic alignment in an asymptomatic population. Spine 31:E507–E512. doi:10.1097/01.brs.0000224533.19359.89

    Article  PubMed  Google Scholar 

  35. Giger M (2002) Computer-aided diagnosis in radiology. Acad Radiol 9:1–3. doi:10.1016/S1076-6332(03)80289-1

    Article  PubMed  Google Scholar 

  36. Gille O, Champain N, Benchikh-El-Fegoun A, Vital JM, Skalli W (2007) Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine 32:568–573. doi:10.1097/01.brs.0000256866.25747.b3

    Article  PubMed  Google Scholar 

  37. Göçen S, Aksu M, Baktiroğlu L, Ozcan O (1998) Evaluation of computed tomographic methods to measure vertebral rotation in adolescent idiopathic scoliosis: an intraobserver and interobserver analysis. J Spinal Disord 11:210–214

    PubMed  Google Scholar 

  38. Göçen S, Havitçioglu H, Alici E (1999) A new method to measure vertebral rotation from CT scans. Eur Spine J 8:261–265. doi:10.1007/s005860050170

    Article  PubMed  Google Scholar 

  39. Goh S, Tan C, Price R, Edmondston S, Song S, Davis S, Singer K (2000) Influence of age and gender on thoracic vertebral body shape and disc degeneration: an MR investigation of 169 cases. J Anat 197:647–657. doi:10.1046/j.1469-7580.2000.19740647.x

    Article  PubMed  Google Scholar 

  40. Gunzburg R, Gunzburg J, Wagner J, Fraser R (1991) Radiologic interpretation of lumbar vertebral rotation. Spine 16:660–664

    PubMed  CAS  Google Scholar 

  41. Haughton V, Rogers B, Meyerand E, Resnick D (2002) Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. AJNR Am J Neuroradiol 23:1110–1116

    PubMed  Google Scholar 

  42. Hecquet J, Legaye J, Duval-Beaupère G (1998) Access to a three-dimensional measure of vertebral axial rotation. Eur Spine J 7:206–211. doi:10.1007/s005860050057

    Article  PubMed  CAS  Google Scholar 

  43. Herring J, Dawant B (2001) Automatic lumbar vertebral identification using surface-based registration. J Biomed Inform 34:74–84. doi:10.1006/jbin.2001.1003

    Article  PubMed  CAS  Google Scholar 

  44. Ho E, Upadhyay S, Chan F, Hsu L, Leong J (1993) New methods of measuring vertebral rotation from computed tomographic scans: an intraobserver and interobserver study on girls with scoliosis. Spine 18:1173–1177. doi:10.1097/00007632-199307000-00008

    Article  PubMed  CAS  Google Scholar 

  45. Ho E, Upadhyay S, Ferris L, Chan F, Bacon-Shone J, Hsu L, Leong J (1992) A comparative study of computed tomographic and plain radiographic methods to measure vertebral rotation in adolescent idiopathic scoliosis. Spine 17:771–774. doi:10.1097/00007632-199207000-00008

    Article  PubMed  CAS  Google Scholar 

  46. Huynh T, Dansereau J, Maurais G (1997) Development of a vertebral endplate 3-D reconstruction technique. IEEE Trans Med Imaging 16:689–696. doi:10.1109/42.640760

    Article  PubMed  CAS  Google Scholar 

  47. Kojima T, Kurokawa T (1992) Rotation vector, a new method for representation of 3-dimensional deformity in scoliosis. Spine 17:1296–1303

    Article  PubMed  CAS  Google Scholar 

  48. Kouwenhoven JW, Vincken K, Bartels L, Castelein R (2006) Analysis of preexistent vertebral rotation in the normal spine. Spine 31:1467–1472. doi:10.1097/01.brs.0000219938.14686.b3

    Article  PubMed  Google Scholar 

  49. Kouwenhoven JW, Bartels L, Vincken K, Viergever M, Verbout A, Delhaas T, Castelein R (2007) The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine 32:1123–1128. doi:10.1097/01.brs.0000261563.75469.b0

    Article  PubMed  Google Scholar 

  50. Krismer M, Sterzinger W, Christian H, Frischhut B, Bauer R (1996) Axial rotation measurement of scoliotic vertebrae by means of computed tomography scans. Spine 21:576–581. doi:10.1097/00007632-199603010-00009

    Article  PubMed  CAS  Google Scholar 

  51. Kuklo T, Potter B, Lenke L (2005) Vertebral rotation and thoracic torsion in adolescent idiopathic scoliosis: what is the best radiographic correlate? J Spinal Disord Tech 18:139–147. doi:10.1097/01.bsd.0000159033.89623.bc

    Article  PubMed  Google Scholar 

  52. Kuklo T, Potter B, O’Brien M, Schroeder T, Lenke L, Polly D, Group SDS (2005) Reliability analysis for digital adolescent idiopathic scoliosis measurements. J Spinal Disord Tech 18:152–159. doi:10.1097/01.bsd.0000148094.75219.b0

    Article  PubMed  Google Scholar 

  53. Kuklo T, Potter B, Polly D, O’Brien M, Schroeder T, Lenke L (2005) Reliability analysis for manual adolescent idiopathic scoliosis measurements. Spine 30:444–454. doi:10.1097/01.brs.0000153702.99342.9c

    Article  PubMed  Google Scholar 

  54. Labelle H, Dansereau J, Bellefleur C, Jéquier J (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4:88–94. doi:10.1007/BF00278918

    Article  PubMed  CAS  Google Scholar 

  55. Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 29:343–349. doi:10.1097/01.BRS.0000109991.88149.19

    Article  PubMed  Google Scholar 

  56. Liljenqvist U, Link T, Halm H (2000) Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis. Spine 25:1247–1253. doi:10.1097/00007632-200005150-00008

    Article  PubMed  CAS  Google Scholar 

  57. Marchesi D, Transfeldt E, Bradford D, Heithoff K (1992) Changes in vertebral rotation after Harrington and Luque instrumentation for idiopathic scoliosis. Spine 17:775–780

    PubMed  CAS  Google Scholar 

  58. Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been EIH (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine 29:1755–1763. doi:10.1097/01.BRS.0000134575.04084.EF

    Article  PubMed  Google Scholar 

  59. Matteri R, Pope M, Frymoyer J (1976) A biplane radiographic method of determining vertebral rotation in postmortem specimens. Clin Orthop Relat Res 116:95–98

    PubMed  Google Scholar 

  60. Mehta M (1973) Radiographic estimation of vertebral rotation in scoliosis. J Bone Jt Surg Br 55:513–520

    CAS  Google Scholar 

  61. Mitton D, Landry C, Véron S, Skalli W, Lavaste F, De Guise J (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139. doi:10.1007/BF02344767

    Article  PubMed  CAS  Google Scholar 

  62. Mitulescu A, Semaan I, De Guise J, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39:152–158. doi:10.1007/BF02344797

    Article  PubMed  CAS  Google Scholar 

  63. Monji J, Koreska J (unpublished) Analysis of spine rotation: a new accurate method for clinical use

  64. Nash C, Moe J (1969) A study of vertebral rotation. J Bone Jt Surg Am 51:223–229

    Google Scholar 

  65. Nojiri K, Matsumoto M, Chiba K, Toyama Y (2005) Morphometric analysis of the thoracic and lumbar spine in Japanese on the use of pedicle screws. Surg Radiol Anat 27:123–128. doi:10.1007/s00276-004-0305-4

    Article  PubMed  Google Scholar 

  66. Oda I, Abumi K, Cunningham B, Kaneda K, McAfee P (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27:E64–E70. doi:10.1097/00007632-200202010-00007

    Article  PubMed  Google Scholar 

  67. Omeroğlu H, Ozekin O, Biçimoğlu A (1996) Measurement of vertebral rotation in idiopathic scoliosis using the Perdriolle torsionmeter: a clinical study on intraobserver and interobserver error. Eur Spine J 5:167–171. doi:10.1007/BF00395508

    Article  PubMed  Google Scholar 

  68. Panigrahy S, Caruthers S, Krejza J, Barnes P (2000) Registration of three-dimensional MR and CT studies of the cervical spine. AJNR Am J Neuroradiol 21:282–289

    PubMed  CAS  Google Scholar 

  69. Parent S, Labelle H, Skalli W, Latimer B, de Guise J (2002) Morphometric analysis of anatomic scoliotic specimens. Spine 27:2305–2311. doi:10.1097/00007632-200211010-00002

    Article  PubMed  Google Scholar 

  70. Pearcy M, Tibrewal S (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9:582–587. doi:10.1097/00007632-198409000-00008

    Article  PubMed  CAS  Google Scholar 

  71. Perdriolle R, Vidal J (1985) Thoracic idiopathic scoliosis curve evolution and prognosis. Spine 10:785–791. doi:10.1097/00007632-198511000-00001

    Article  PubMed  CAS  Google Scholar 

  72. Petit Y, Aubin CE, Labelle H (2004) Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. J Biomech 37:173–180. doi:10.1016/S0021-9290(03)00310-5

    Article  PubMed  Google Scholar 

  73. Pomero V, Mitton D, Laporte S, De Guise J, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 19:240–247. doi:10.1016/j.clinbiomech.2003.11.014

    Article  Google Scholar 

  74. Richards B (1992) Measurement error in assessment of vertebral rotation using the Perdriolle torsionmeter. Spine 17:513–517

    PubMed  CAS  Google Scholar 

  75. Rogers B, Haughton V, Arfanakis K, Meyerand E (2002) Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn Reson Med 48:1072–1075. doi:10.1002/mrm.10319

    Article  PubMed  Google Scholar 

  76. Rogers B, Wiese S, Blankenbaker D, Meyerand E, Haughton V (2005) Accuracy of an automated method to measure rotations of vertebrae from computerized tomography data. Spine 30:694–696. doi:10.1097/01.brs.0000155413.73518.b0

    Article  PubMed  Google Scholar 

  77. Russell G, Raso V, Mclvor J, Hill D (1990) A comparison of four computerized methods for measuring vertebral rotation. Spine 15:24–27. doi:10.1097/00007632-199001000-00007

    Article  PubMed  CAS  Google Scholar 

  78. Sevastik B, Xiong B, Sevastik J, Hedlund R, Suliman I (1995) Vertebral rotation and pedicle length asymmetry in the normal adult spine. Eur Spine J 4:95–97. doi:10.1007/BF00278919

    Article  PubMed  CAS  Google Scholar 

  79. Skalli W, Lavaste F, Descrimes JL (1995) Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values? Spine 20:546–553. doi:10.1097/00007632-199503010-00008

    Article  PubMed  CAS  Google Scholar 

  80. Smyth P, Taylor C, Adams J (1997) Automatic measurement of vertebral shape using active shape models. Image Vis Comput 15:575–581. doi:10.1016/S0262-8856(97)00006-1

    Article  Google Scholar 

  81. Stokes I (1989) Axial rotation component of thoracic scoliosis. J Orthop Res 7:702–708. doi:10.1002/jor.1100070511

    Article  PubMed  CAS  Google Scholar 

  82. Stokes I (1994) Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19:236–248

    PubMed  CAS  Google Scholar 

  83. Stokes I (1997) Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature. Spine 22:2495–2503. doi:10.1097/00007632-199711010-00006

    Article  PubMed  CAS  Google Scholar 

  84. Stokes I, Aronsson D (2001) Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord Tech 14:317–322. doi:10.1097/00002517-200108000-00006

    Article  CAS  Google Scholar 

  85. Stokes I, Bigalow L, Moreland M (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine 11:213–218. doi:10.1097/00007632-198604000-00006

    Article  PubMed  CAS  Google Scholar 

  86. Stokes I, Bigalow L, Moreland M (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113. doi:10.1002/jor.1100050113

    Article  PubMed  CAS  Google Scholar 

  87. Tamura Y, Sugano N, Sasama T, Sato Y, Tamura S, Yonenobu K, Yoshikawa HTO (2005) Surface-based registration accuracy of CT-based image-guided spine surgery. Eur Spine J 14:291–297. doi:10.1007/s00586-004-0797-y

    Article  PubMed  Google Scholar 

  88. Tan S, Teo E, Chua H (2002) Quantitative three-dimensional anatomy of lumbar vertebrae in Singaporean Asians. Eur Spine J 11:152–158. doi:10.1007/s00586-001-0365-7

    Article  PubMed  CAS  Google Scholar 

  89. Tan S, Teo E, Chua H (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146. doi:10.1007/s00586-003-0586-z

    Article  PubMed  CAS  Google Scholar 

  90. Vrtovec T, Likar B, Pernuš F (2005) Automated curved planar reformation of 3D spine images. Phys Med Biol 50:4527–4540. doi:10.1088/0031-9155/50/19/007

    Article  PubMed  Google Scholar 

  91. Vrtovec T, Ourselin S, Lavier G, Likar B, Pernuš F (2007) Automated generation of curved planar reformations from MR images of the spine. Phys Med Biol 52:2865–2878. doi:10.1088/0031-9155/52/10/015

    Article  PubMed  Google Scholar 

  92. Vrtovec T, Pernuš F, Likar B (2008) A symmetry-based method for the determination of vertebral rotation in 3D. In: Metaxas D, Axel L, Davies B (eds) Lecture Notes in Computer Science (LNCS): proceedings of the 11th medical image computing and computer-assisted intervention–MICCAI 2008, Springer, New York, NY, USA, vol 5241, pp 942–950

  93. Vrtovec T, Pernuš F, Likar B A review of methods for quantitative evaluation of spinal curvature. Eur Spine J. doi:10.1007/s00586-009-0913-0

  94. Weiss HR (1995) Measurement of vertebral rotation: Perdriolle versus Raimondi. Eur Spine J 4:34–38. doi:10.1007/BF00298416

    Article  PubMed  CAS  Google Scholar 

  95. Wever D, Veldhuizen A, Klein J, Webb P, Nijenbanning G, Cool J, Horn J (1999) A biomechanical analysis of the vertebral and rib deformities in structural scoliosis. Eur Spine J 8:252–260. doi:10.1007/s005860050169

    Article  PubMed  CAS  Google Scholar 

  96. Xiong B, Sevastik J, Hedlund R, Sevastik B (1993) Segmental vertebral rotation in early scoliosis. Eur Spine J 2:37–41. doi:10.1007/BF00301053

    Article  CAS  PubMed  Google Scholar 

  97. Yao J OConnor S, Summers R (2006) Automated spinal column extraction and partitioning. In: proceedings of the 3rd IEEE international symposium on biomedical imaging: from nano to macro–ISBI 2006. IEEE, Arlington, VA, USA, pp 390–393

  98. Yazici M, Acaroglu E, Alanay A, Deviren V, Cila A, Surat A (2001) Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 21:252–256. doi:10.1097/00004694-200103000-00025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Higher Education, Science and Technology, Slovenia, under grants P2–0232, L2–7381, L2–9758, and J2–0716.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaž Vrtovec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrtovec, T., Pernuš, F. & Likar, B. A review of methods for quantitative evaluation of axial vertebral rotation. Eur Spine J 18, 1079–1090 (2009). https://doi.org/10.1007/s00586-009-0914-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-0914-z

Keywords

Navigation