Skip to main content

Automated Determination of the Spine-Based Coordinate System for an Efficient Cross-Sectional Visualization of 3D Spine Images

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

Abstract

The most common and straightforward visualization of three-dimensional (3D) images of the spine and vertebrae, usually obtained by computed tomography (CT) or magnetic resonance (MR) imaging techniques, is based on multi-planar cross-sections that are positioned in the coordinate system of the 3D image. However, such multi-planar cross-sections may not provide sufficient or qualitative enough diagnostic information, because they cannot follow the curvature of the spine. As a result, not all of the important details can be shown simultaneously in any cross-section. To overcome this problem, cross-sections have to be generated in the coordinate system of the spine, which can be achieved by curved-planar 3D image reformation that reduces the structural complexity in favor of an improved feature perception of anatomical structures. The parameters for such cross-sectional image reformation are determined from the spine-based coordinate system, which is defined by the curve representing the vertebral column and by the rotation of vertebrae about the spine curve. This chapter is focused on the techniques for automated determination of the spine-based coordinate system for an efficient cross-sectional visualization of 3D spine images, acquired by the CT and MR imaging techniques. The reformatted cross-sections are diagnostically valuable, enable easier navigation, manipulation and orientation in 3D space, and are useful for initializing segmentation and other automated image analysis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is assumed that point \({\mathbf{p}} = [x,y,z]\) is a column vector. If \({\mathbf{p}}\) is a row vector, vector transpose operation is required, therefore the equation \({\mathbf{p}^{\prime}} = (x^{\prime},y^{\prime},z^{\prime}) = R{\kern 1pt} [x,y,z] = R{\kern 1pt} {\mathbf{p}}\) turns into \({\mathbf{p}^{\prime}} = (x^{\prime},y^{\prime},z^{\prime}) = \left( {R{\kern 1pt} [x,y,z]^{T} } \right)^{T} = \left( {R{\kern 1pt} {\mathbf{p}}^{T} } \right)^{T}\).

  2. 2.

    It is assumed that \({\mathbf{p}}\) is a column vector. If \({\mathbf{p}}\) is a row vector, vector transpose operation is required, therefore Eq. 56 turns into \({\mathbf{p}^{\prime}} = (x^{\prime},y^{\prime},z^{\prime}) = \left( {R(\alpha ,\beta ,\gamma ) [x,y,z]^{T} } \right)^{T} = \left( {R(\alpha ,\beta ,\gamma ) {\mathbf{p}}^{T} } \right)^{T}\).

References

  1. Aaro S, Dahlborn M (1981) Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer-tomography. Spine 6(5):460–467

    Article  Google Scholar 

  2. Adam CJ, Askin GN (2006) Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine 31(3):E80–E83

    Article  Google Scholar 

  3. Angelelli P, Hauser H (2011) Straightening tubular flow for side-by-side visualization. IEEE Trans Visual Comput Graphics 17(12):2063–2070

    Article  Google Scholar 

  4. Apicella PL, Mirowitz SA (1995) Interactive multiplanar reformation of conventional two-dimensional MR images. Clin Imaging 19(4):279–282

    Article  Google Scholar 

  5. Aylward SR, Bullitt E (2002) Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21(2):61–75

    Article  Google Scholar 

  6. Berthonnaud E, Dimnet J (2007) Analysis of structural features of deformed spines in frontal and sagittal projections. Comput Med Imaging Graph 31(1):9–16

    Article  Google Scholar 

  7. Bhargavan M, Kaye AH, Forman HP, Sunshine JH (2009) Workload of radiologists in United States in 2006–2007 and trends since 1991–1992. Radiology 252(2):458–467

    Article  Google Scholar 

  8. Birchall D, Hughes DG, Hindle J, Robinson L, Williamson JB (1997) Measurement of vertebral rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging. Spine 22(20):2403–2407

    Article  Google Scholar 

  9. Bitter I, Sato M, Bender M, McDonnell KT, Kaufman A, Wan M (2000) CEASAR: a smooth, accurate and robust centerline extraction algorithm. In: Ertl T, Hamann B, Varshney A (eds) Proceedings of the IEEE visualization 2000 conference—Vis 2000, 8–13 Oct 2000. IEEE, Salt Lake City, pp 45–52

    Google Scholar 

  10. Börnert P (2003) 2D RF-pulse-encoded curved-slice imaging. Magn Reson Mater Phys, Biol Med 16(2):86–92

    Article  Google Scholar 

  11. Börnert P, Schäffter T (1996) Curved slice imaging. Magn Reson Med 36(6):932–939

    Article  Google Scholar 

  12. Cousins JP, Haughton VM (2009) Magnetic resonance imaging of the spine. J Am Acad Orthop Surg 17(1):22–30

    Google Scholar 

  13. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part I: measurement of position and orientation of vertebrae and assessment of clinical shape parameters. J Biomech 25(11):1357–1362

    Article  Google Scholar 

  14. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part II: relations between lateral deviation, lateral tilt and axial rotation of vertebrae. J Biomech 25(12):1443–1450

    Article  Google Scholar 

  15. Drerup B, Hierholzer E (1996) Assessment of scoliotic deformity from back shape asymmetry using an improved mathematical model. Clin Biomech 11(7):376–383

    Article  Google Scholar 

  16. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  17. Forsberg D, Lundström C, Andersson M, Knutsson H (2014) Model-based registration for assessment of spinal deformities in idiopathic scoliosis. Phys Med Biol 59(2):311–326

    Article  Google Scholar 

  18. Forsberg D, Lundström C, Andersson M, Vavruch L, Tropp H, Knutsson H (2013) Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis. Phys Med Biol 58(6):1775–1787

    Article  Google Scholar 

  19. Ge Y, Stelts DR, Vining DJ, Wang J, Ge Y (1999) Computing the centerline of a colon: a robust and efficient method based on 3D skeletons. J Comput Assist Tomogr 23(5):786–794

    Article  Google Scholar 

  20. Göçen S, Havitçioglu H, Alici E (1999) A new method to measure vertebral rotation from CT scans. Eur Spine J 8(4):261–265

    Article  Google Scholar 

  21. Gong J-S, Xu J-M (2004) Role of curved planar reformations using multidetector spiral CT in diagnosis of pancreatic and peripancreatic diseases. World J Gastroenterol 10(13):1943–1947

    Google Scholar 

  22. Hanaoka S, Nomura Y, Nemoto M, Masutani Y, Maeda E, Yoshikawa T, Hayashi N, Yoshioka N, Ohtomo K (2010) Automated segmentation method for spinal column based on a dual elliptic column model and its application for virtual spinal straightening. J Comput Assist Tomogr 34(1):156–162

    Article  Google Scholar 

  23. Haughton VM, Rogers B, Meyerand E, Resnick DK (2002) Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am J Neuroradiol 23(7):1110–1116

    Google Scholar 

  24. Hay O, Hershkovitz I, Rivlin E (2009) Spine curve modeling for quantitative analysis of spinal curvature. In: Proceedings of the 31st IEEE annual international conference of the engineering in medicine and biology society (EMBS)—EMBC 2009, 2–6 Sept 2009. IEEE, Minneapolis, pp 6356–6359

    Google Scholar 

  25. He S, Dai R, Lu B, Cao C, Bai H, Jing B (2001) Medial axis reformation: a new visualization method for CT angiography. Acad Radiol 8(8):726–733

    Article  Google Scholar 

  26. Ho EKW, Upadhyay SS, Chan FL, Hsu LCS, Leong JCY (1993) New methods of measuring vertebral rotation from computed tomographic scans: an intraobserver and interobserver study on girls with scoliosis. Spine 18(9):1173–1177

    Article  Google Scholar 

  27. Huysmans T, Haex B, Van Audekercke R, Vander Sloten J, Van Der Perre G (2004) Three-dimensional mathematical reconstruction of the spinal shape, based on active contours. J Biomech 37(11):1793–1798

    Article  Google Scholar 

  28. Jochimsen TH, Norris DG (2002) Single-shot curved slice imaging. Magn Reson Mater Phys, Biol Med 14(1):50–55

    Article  Google Scholar 

  29. Kadoury S, Cheriet F, Labelle H (2010) Self-calibration of biplanar radiographic images through geometric spine shape descriptors. IEEE Trans Biomed Eng 57(7):1663–1675

    Article  Google Scholar 

  30. Kadoury S, Labelle H, Paragios N (2011) Automatic inference of articulated spine models in CT images using high-order markov random fields. Med Image Anal 15(4):426–437

    Article  Google Scholar 

  31. Kadoury S, Labelle H, Paragios N (2013) Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging 32(7):1227–1238

    Article  Google Scholar 

  32. Kadoury S, Shen J, Parent S (2014) Global geometric torsion estimation in adolescent idiopathic scoliosis. Med Biol Eng Comput 52:309–319

    Article  Google Scholar 

  33. Kaminsky J, Klinge P, Rodt T, Bokemeyer M, Luedemann W, Samii M (2004) Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput Med Imaging Graph 28(3):119–127

    Article  Google Scholar 

  34. Kanitsar A, Fleischmann D, Wegenkittl R, Felkel P, Gröller ME (2002) CPR—curved planar reformation. In: Moorhead R, Gross M, Joy KI (eds) Proceedings of the IEEE visualization 2002 conference—Vis 2002, 27 Oct–1 Nov 2002. IEEE, Boston, pp 37–44

    Google Scholar 

  35. Kanitsar A, Wegenkittl R, Fleischmann D, Gröller ME (2003) Advanced curved planar reformation: flattening of vascular structures. In: Turk G, van Vijk JJ, Moorehad R (eds) Proceedings of the IEEE visualization 2003 conference—Vis 2003, 19–24 Oct 2003. IEEE, Seattle, pp 43–50

    Google Scholar 

  36. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482

    Article  Google Scholar 

  37. Kouwenhoven J-W, Bartels LW, Vincken KL, Viergever MA, Verbout AJ, Delhaas T, Castelein RM (2007) The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine 32(10):1123–1128

    Article  Google Scholar 

  38. Kouwenhoven JWM, Vincken KL, Bartels LW, Castelein RM (2006) Analysis of preexistent vertebral rotation in the normal spine. Spine 31(13):1467–1472

    Article  Google Scholar 

  39. Krismer M, Sterzinger W, Christian H, Frischhut B, Bauer R (1996) Axial rotation measurement of scoliotic vertebrae by means of computed tomography scans. Spine 21(5):576–581

    Article  Google Scholar 

  40. Lam GC, Hill DL, Le LH, Raso JV, Lou EH (2008) Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods. Scoliosis 3:16

    Article  Google Scholar 

  41. Lampe OD, Correa C, Ma K-L, Hauser H (2009) Curve-centric volume reformation for comparative visualization. IEEE Trans Visual Comput Graphics 15(6):1235–1242

    Article  Google Scholar 

  42. Law TY, Heng PA (2000) Automatic centerline extraction for 3D virtual bronchoscopy. In: Delp SL, DiGioia AM, Jaramaz B (eds) Proceedings of the 3rd international conference on medical image computing and computer-assisted intervention—MICCAI 2000, 11–14 Oct 2000. Lecture notes in computer science (LNCS), vol 1935. Springer, Pittsburgh, pp 786–795

    Google Scholar 

  43. Leonardi M, Righini A, Agati R, Brayda G, Zanotti B (1991) Curved CT reformatted images of head scans. J Comput Assist Tomogr 15(6):1074–1076

    Article  Google Scholar 

  44. Li ALK, Yen D (2011) Effect of increased MRI and CT scan utilization on clinical decision-making in patients referred to a surgical clinic for back pain. Can J Surg 54(2):128–132

    Article  Google Scholar 

  45. Liljenqvist UR, Allkemper T, Hackenberg L, Link TM, Steinbeck J, Halm HFH (2002) Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. J Bone Joint Surg Am 84(3):359–368

    Google Scholar 

  46. Maddah M, Soltanian-Zadeh H, Afzali-Kusha A, Maddah M (2003) Snake modeling and distance transform approach to vascular centerline extraction and quantification. Comput Med Imaging Graph 27(6):503–512

    Article  Google Scholar 

  47. Masharawi Y, Salame K, Mirovsky Y, Peleg S, Dar G, Steinberg N, Hershkovitz I (2008) Vertebral body shape variation in the thoracic and lumbar spine: characterization of its asymmetry and wedging. Clin Anat 21(1):46–54

    Article  Google Scholar 

  48. Menten R, Mousny M, Saint-Martin C, Clapuyt P (2005) Planispheric multiplanar reformatted CT: a new method for evaluation of paediatric congenital spine abnormalities. Pediatr Radiol 35(6):627–629

    Article  Google Scholar 

  49. Neubert A, Fripp J, Engstrom C, Schwarz R, Lauer L, Salvado O, Crozier S (2012) Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys Med Biol 57(24):8357–8376

    Article  Google Scholar 

  50. Newton PO, Hahn GW, Fricka KB, Wenger DR (2002) Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities. Spine 27(8):844–850

    Article  Google Scholar 

  51. Ochi T, Shimizu K, Yasuhara Y, Shigesawa T, Mochizuki T, Ikezoe J (1999) Curved planar reformatted CT angiography: usefulness for the evaluation of aneurysms at the carotid siphon. Am J Neuroradiol 20(6):1025–1030

    Google Scholar 

  52. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991) Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine 16(8):861–869

    Article  Google Scholar 

  53. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17(3):299–306

    Article  Google Scholar 

  54. Panjabi MM, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16(8):888–901

    Article  Google Scholar 

  55. Patwardhan AG, Rimkus A, Gavin TM, Bueche M, Meade KP, Bielski R, Ibrahim K (1996) Geometric analysis of coronal decompensation in idiopathic scoliosis. Spine 21(10):1192–1200

    Article  Google Scholar 

  56. Peng Z, Zhong J, Wee W, Lee J-H (2005) Automated vertebra detection and segmentation from the whole spine MR images. In: Zhang YT, Xu LX, Roux C, Zhuang TG, Tamura T, Galiana H (eds) Proceedings of the 27th IEEE annual international conference of the engineering in medicine and biology society (EMBS)—EMBC 2005, 1–4 Sept 2005. IEEE, Shanghai, pp 2527–2530

    Google Scholar 

  57. Perchet D, Fetita C, Preteux F (2004) Advanced navigation tools for virtual bronchoscopy. In: Dougherty ER, Astola JT, Egiazarian KO (eds) Proceedings of the SPIE medical imaging 2004: image processing conference, 14–19 Feb 2004, vol 5298. SPIE, San Jose, pp 147–158

    Google Scholar 

  58. Poncet P, Dansereau J, Labelle H (2001) Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine 26(20):2235–2243

    Article  Google Scholar 

  59. Poncet P, Trochu F, Dansereau J (1999) Curvilinear three-dimensional modeling of spinal curves with dual kriging. Comput Methods Biomech Biomed Eng 2(4):295–308

    Article  Google Scholar 

  60. Prokesch RW, Chow LC, Beaulieu CF, Nino-Murcia M, Mindelzun RE, Bammer R, Huang J, Jeffrey RB (2002) Local staging of pancreatic carcinoma with multi-detector row CT: use of curved planar reformations initial experience. Radiology 225(3):759–765

    Article  Google Scholar 

  61. Prokesch RW, Coulam CH, Chow LC, Bammer R, Rubin GD (2002) CT angiography of the subclavian artery: utility of curved planar reformations. J Comput Assist Tomogr 26(2):199–201

    Article  Google Scholar 

  62. Rabassa AE, Guinto FC Jr, Crow WN, Chaljub G, Wright GD, Storey GS (1993) CT of the spine: value of reformatted images. Am J Roentgenol 161(6):1223–1227

    Article  Google Scholar 

  63. Raman R, Napel S, Beaulieu CF, Bain ES, Jeffrey RB Jr, Rubin GD (2002) Automated generation of curved planar reformations from volume data: method and evaluation. Radiology 223(1):275–280

    Article  Google Scholar 

  64. Raman R, Napel S, Rubin GD (2003) Curved-slab maximum intensity projection: method and evaluation. Radiology 229(1):255–260

    Article  Google Scholar 

  65. Roberts CC, McDaniel NT, Krupinski EA, Erly WK (2003) Oblique reformation in cervical spine computed tomography: a new look at an old friend. Spine 28(2):167–170

    Article  Google Scholar 

  66. Rogers B, Wiese S, Blankenbaker D, Meyerand E, Haughton V (2005) Accuracy of an automated method to measure rotations of vertebrae from computerized tomography data. Spine 30(6):694–696

    Article  Google Scholar 

  67. Rogers BP, Haughton VM, Arfanakis K, Meyerand ME (2002) Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn Reson Med 48(6):1072–1075

    Article  Google Scholar 

  68. Rothman SLG, Dobben GD, Rhodes ML, Jr Glenn WV, Azzawi Y-M (1984) Computed tomography of the spine: curved coronal reformations from serial images. Radiology 150(1):185–190

    Article  Google Scholar 

  69. Rousseeuw PJ, Leroy AM (2003) Robust regression and outlier detection. Wiley series in probability and statistics. Wiley, New York

    Google Scholar 

  70. Sakas G (2002) Trends in medical imaging: from 2D to 3D. Comput Graph 26(4):577–587

    Article  Google Scholar 

  71. Samara Y, Fiebich M, Dachman AH, Kuniyoshi JK, Doi K, Hoffmann KR (1999) Automated calculation of the centerline of the human colon on CT images. Acad Radiol 6(6):352–359

    Article  Google Scholar 

  72. Saroul L, Gerlach S, Hersch RD (2003) Exploring curved anatomic structures with surface sections. In: Turk G, van Vijk JJ, Moorehad R (eds) Proceedings of the IEEE visualization 2003 conference—Vis 2003, 19–24 Oct 2003. IEEE, Seattle, pp 27–34

    Google Scholar 

  73. Soni K, Bhargavan M, Forman HP, Sunshine JH (2010) Who’s underworked and who’s overworked now? An update on radiologist shortage and surplus. Am J Roentgenol 194(3):697–703

    Article  Google Scholar 

  74. Stokes IAF, Bigalow LC, Moreland MS (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5(1):102–113

    Article  Google Scholar 

  75. Summers RM (2003) Road maps for advancement of radiologic computer-aided detection in the 21st century. Radiology 229(1):11–13

    Article  Google Scholar 

  76. Summers RM (2012) Evaluation of computer-aided detection devices: consensus is developing. Acad Radiol 19(4):377–379

    Article  Google Scholar 

  77. Sunshine JH, Maynard CD, Paros J, Forman HP (2004) Update on the diagnostic radiologist shortage. Am J Roentgenol 182(2):301–305

    Article  Google Scholar 

  78. Štern D, Likar B, Pernuš F, Vrtovec T (2010) Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Phys Med Biol 55(1):247–264

    Article  Google Scholar 

  79. Štern D, Likar B, Pernuš F, Vrtovec T (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56(23):7505–7522

    Article  Google Scholar 

  80. Štern D, Njagulj V, Likar B, Pernuš F, Vrtovec T (2013) Quantitative vertebral morphometry based on parametric modeling of vertebral bodies in 3D. Osteoporos Int 24(4):1357–1368

    Article  Google Scholar 

  81. Tins B (2010) Technical aspects of CT imaging of the spine. Insights Imaging 1(5–6):349–359

    Article  Google Scholar 

  82. Verdonck B, Nijlunsing R, Gerritsen FA, Cheung J, Wever DJ, Veldhuizen A, Devillers S, Makram-Ebeid S (1998) Computer assisted quantitative analysis of deformities of the human spine. In: Wells WM, Colchester A, Delp S (eds) Proceedings of the 1st international conference on medical image computing and computer-assisted intervention—MICCAI’98, 11–13 Oct 1998. Lecture notes in computer science (LNCS), vol 1496. Springer, Cambridge, pp 822–831

    Google Scholar 

  83. Vrtovec T, Likar B, Pernuš F (2005) Automated curved planar reformation of 3D spine images. Phys Med Biol 50(19):4527–4540

    Article  Google Scholar 

  84. Vrtovec T, Likar B, Pernuš F (2005) Spine-based coordinate system. In: Zhang YT, Xu LX, Roux C, Zhuang TG, Tamura T, Galiana H (eds) Proceedings of the 27th IEEE annual international conference of the engineering in medicine and biology society (EMBS)—EMBC 2005, 1–4 Sept 2005. IEEE, Shanghai, pp 5120–5123

    Google Scholar 

  85. Vrtovec T, Likar B, Pernuš F (2008) Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine. Phys Med Biol 53(7):1895–1908

    Article  Google Scholar 

  86. Vrtovec T, Ourselin S, Lavier G, Likar B, Pernuš F (2007) Automated generation of curved planar reformations from MR images of the spine. Phys Med Biol 52(10):2865–2878

    Article  Google Scholar 

  87. Vrtovec T, Pernuš F, Likar B (2008) A symmetry-based method for the determination of vertebral rotation in 3D. In: Metaxas D, Axel L, Davies B (eds) Proceedings of the 11th medical image computing and computer-assisted intervention—MICCAI 2008, 6–10 Sept 2008. Lecture notes in computer science (LNCS), vol 5241. Springer, New York, pp 942–950

    Google Scholar 

  88. Vrtovec T, Pernuš F, Likar B (2009) A review of methods for quantitative evaluation of axial vertebral rotation. Eur Spine J 18(8):1079–1090

    Article  Google Scholar 

  89. Vrtovec T, Pernuš F, Likar B (2009) A review of methods for quantitative evaluation of spinal curvature. Eur Spine J 18(5):593–607

    Article  Google Scholar 

  90. Vrtovec T, Pernuš F, Likar B (2010) Determination of axial vertebral rotation in MR images: comparison of four manual and a computerized method. Eur Spine J 19(5):774–781

    Article  Google Scholar 

  91. Vrtovec T, Vengust R, Likar B, Pernuš F (2010) Analysis of four manual and a computerized method for measuring axial vertebral rotation in computed tomography images. Spine 35(12):E535–E541

    Article  Google Scholar 

  92. Wan M, Liang Z, Ke Q, Hong L, Bitter I, Kaufman A (2002) Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 21(12):1450–1460

    Article  Google Scholar 

  93. Weber H, Gallichan D, Schultz G, Cocosco CA, Littin S, Reichardt W, Welz A, Witschey W, Hennig J, Zaitsev M (2013) Excitation and geometrically matched local encoding of curved slices. Magn Reson Med 69(5):1317–1325

    Article  Google Scholar 

  94. Weber H, Haas M, Kokorin D, Gallichan D, Hennig J, Zaitsev M (2014) Local shape adaptation for curved slice selection. Mag Reson Med 72(1):112–123

    Google Scholar 

  95. Weiss KL, Storrs JM, Banto RB (2006) Automated spine survey iterative scan technique. Radiology 239(1):255–262

    Article  Google Scholar 

  96. Yao J, O’Connor SD, Summers RM (2006) Automated spinal column extraction and partitioning. In: Proceedings of the 3rd IEEE international symposium on biomedical imaging: from nano to macro—ISBI 2006, 6–9 Apr 2006. IEEE, Arlington, pp 390–393

    Google Scholar 

  97. Yushkevich PA, Zhang H, Gee JC (2006) Continuous medial representation for anatomical structures. IEEE Trans Med Imaging 25(12):1547–1564

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank B. Ibragimov (University of Ljubljana, Faculty of Electrical Engineering, Slovenia) for manually segmenting the spine from a CT image that was used for rendering purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaž Vrtovec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vrtovec, T. (2015). Automated Determination of the Spine-Based Coordinate System for an Efficient Cross-Sectional Visualization of 3D Spine Images. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics