Skip to main content
Log in

Effect of a novel interspinous implant on lumbar spinal range of motion

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Interspinous devices have been introduced to provide a minimally invasive surgical alternative for patients with lumbar spinal stenosis or foraminal stenosis. Little is known however, of the effect of interspinous devices on intersegmental range of motion (ROM). The aim of this in vivo study was to investigate the effect of a novel minimally invasive interspinous implant, InSwing®, on sagittal plane ROM of the lumbar spine using an ovine model. Ten adolescent Merino lambs underwent a destabilization procedure at the L1–L2 level simulating a stenotic degenerative spondylolisthesis (as described in our earlier work; Spine 15:571–576, 1990). All animals were placed in a side-lying posture and lateral radiographs were taken in full flexion and extension of the trunk in a standardized manner. Radiographs were repeated following the insertion of an 8-mm InSwing® interspinous device at L1–L2, and again with the implant secured by means of a tension band tightened to 1 N/m around the L1 and L2 spinous processes. ROM was assessed in each of the three conditions and compared using Cobb’s method. A paired t-test compared ROM for each of the experimental conditions (P < 0.05). After instrumentation with the InSwing® interspinous implant, the mean total sagittal ROM (from full extension to full flexion) was reduced by 16% from 6.3° to 5.3 ± 2.7°. The addition of the tension band resulted in a 43% reduction in total sagittal ROM to 3.6 ± 1.9° which approached significance. When looking at flexion only, the addition of the interspinous implant without the tension band did not significantly reduce lumbar flexion, however, a statistically significant 15% reduction in lumbar flexion was observed with the addition of the tension band (P = 0.01). To our knowledge, this is the first in vivo study radiographically showing the advantage of using an interspinous device to stabilize the spine in flexion. These results are important findings particularly for patients with clinical symptoms related to instable degenerative spondylolisthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boden SD, Wiesel SW (1990) Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine 15:571–576. doi:10.1097/00007632-199006000-00026

    Article  PubMed  CAS  Google Scholar 

  2. Bono CM, Vaccaro AR (2007) Interspinous process devices in the lumbar spine. J Spinal Disord Tech 20:255–261. doi:10.1097/BSD.0b013e3180331352

    Article  PubMed  Google Scholar 

  3. Cakir B, Richter M, Kafer W, Wieser M, Puhl W, Schmidt R (2006) Evaluation of lumbar spine motion with dynamic X-ray—a reliability analysis. Spine 31:1258–1264. doi:10.1097/01.brs.0000217763.80593.50

    Article  PubMed  Google Scholar 

  4. Christie SD, Song JK, Fessler RG (2005) Dynamic interspinous process technology. Spine 30:S73–S78. doi:10.1097/01.brs.0000174532.58468.6c

    Article  PubMed  Google Scholar 

  5. Dai LY, Xu YK, Zhang WM, Zhou ZH (1989) The effect of flexion–extension motion of the lumbar spine on the capacity of the spinal canal. An experimental study. Spine 14:523–525. doi:10.1097/00007632-198905000-00009

    Article  PubMed  CAS  Google Scholar 

  6. Floman Y, Millgram MA, Smorgick Y, Rand N, Ashkenazi E (2007) Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech 20:337–341. doi:10.1097/BSD.0b013e318030a81d

    Article  PubMed  Google Scholar 

  7. Freudiger S, Dubois G, Lorrain M (1999) Dynamic neutralisation of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Arch Orthop Trauma Surg 119:127–132. doi:10.1007/s004020050375

    Article  PubMed  CAS  Google Scholar 

  8. Fujiwara A, Tamai K, An HS, Kurihashi T, Lim TH, Yoshida H, Saotome K (2000) The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J Spinal Disord 13:444–450. doi:10.1097/00002517-200010000-00013

    Article  PubMed  CAS  Google Scholar 

  9. Graf H (1992) Lumbar instability: surgical treatment without fusion. Rachis 412:123–137

    Google Scholar 

  10. Grevitt MP, Gardner AD, Spilsbury J, Shackleford IM, Baskerville R, Pursell LM, Hassaan A, Mulholland RC (1995) The Graf stabilisation system: early results in 50 patients. Eur Spine J 4:169–175. doi:10.1007/BF00298241

    Article  PubMed  CAS  Google Scholar 

  11. Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331. doi:10.1097/01.brs.0000152584.46266.25

    Article  PubMed  Google Scholar 

  12. Humke T, Grob D, Grauer W, Sandler A, Dvorak J (1996) Foraminal changes with distraction and compression of the L4/5 and L5/S1 segments. Eur Spine J 5:183–186. doi:10.1007/BF00395511

    Article  PubMed  CAS  Google Scholar 

  13. Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon) 23:242–247. doi:10.1016/j.clinbiomech.2007.09.004

    Article  CAS  Google Scholar 

  14. Kettler A, Liakos L, Haegele B, Wilke HJ (2007) Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 16:2186–2192. doi:10.1007/s00586-007-0485-9

    Article  PubMed  CAS  Google Scholar 

  15. Kim KA, McDonald M, Pik JH, Khoueir P, Wang MY (2007) Dynamic intraspinous spacer technology for posterior stabilization: case-control study on the safety, sagittal angulation, and pain outcome at 1-year follow-up evaluation. Neurosurg Focus 22:E7–E9

    PubMed  Google Scholar 

  16. Kong DS, Kim ES, Eoh W (2007) One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J Korean Med Sci 22:330–335

    PubMed  Google Scholar 

  17. Laudet CG, Elberg JF, Robine D (1993) Comportement biomécanique d’un ressort inter-apophysaire vertébral postérieur analyse expérimentale du comportement discal en compression et en flexion/extension. Rachis 5:3–7

    Google Scholar 

  18. Leahy JC, Mathias KJ, Heaton A, Shepherd DE, Hukins DW, Deans WF, Brian MW, Wardlaw D (2000) Design of spinous process hooks for flexible fixation of the lumbar spine. Proc Inst Mech Eng [H] 214:479–487. doi:10.1243/0954411001535507

    CAS  Google Scholar 

  19. Levin DA, Hale JJ, Bendo JA (2007) Adjacent segment degeneration following spinal fusion for degenerative disc disease. Bull NYU Hosp Jt Dis 65:29–36

    PubMed  Google Scholar 

  20. Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197. doi:10.1097/01.BRS.0000084877.88192.8E

    Article  PubMed  Google Scholar 

  21. Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380

    PubMed  CAS  Google Scholar 

  22. Minns RJ, Walsh WK (1997) Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine. Spine 22:1819–1825. doi:10.1097/00007632-199708150-00004

    Article  PubMed  CAS  Google Scholar 

  23. Nachemson A (1985) Recent advances in the treatment of low back pain. Int Orthop 9:1–10. doi:10.1007/BF00267031

    Article  PubMed  CAS  Google Scholar 

  24. Penning L, Wilmink JT (1987) Posture-dependent bilateral compression of L4 or L5 nerve roots in facet hypertrophy. A dynamic CT-myelographic study. Spine 12:488–500. doi:10.1097/00007632-198706000-00013

    Article  PubMed  CAS  Google Scholar 

  25. Phillips FM, Voronov LI, Gaitanis IN, Carandang G, Havey RM, Patwardhan AG (2006) Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. Spine J 6:714–722. doi:10.1016/j.spinee.2006.02.003

    Article  PubMed  Google Scholar 

  26. Resnick DK, Choudhri TF, Dailey AT, Groff MW, Khoo L, Matz PG, Mummaneni P, Watters WCIII, Wang J, Walters BC, Hadley MN (2005) Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: fusion in patients with stenosis and spondylolisthesis. J Neurosurg Spine 2:679–685

    Article  PubMed  Google Scholar 

  27. Rigby MC, Selmon GP, Foy MA, Fogg AJ (2001) Graf ligament stabilisation: mid- to long-term follow-up. Eur Spine J 10:234–236. doi:10.1007/s005860100254

    Article  PubMed  CAS  Google Scholar 

  28. Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    PubMed  CAS  Google Scholar 

  29. Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):S164–S169

    PubMed  Google Scholar 

  30. Siddiqui M, Smith FW, Wardlaw D (2007) One-year results of X Stop interspinous implant for the treatment of lumbar spinal stenosis. Spine 32:1345–1348. doi:10.1097/BRS.0b013e31805b7694

    Article  PubMed  Google Scholar 

  31. Singer KP, Edmondston SJ, Day RE, Breidahl WH (1994) Computer-assisted curvature assessment and Cobb angle determination of the thoracic kyphosis. An in vivo and in vitro comparison. Spine 19:1381–1384

    Article  PubMed  CAS  Google Scholar 

  32. Sterna J, Chopek L, Ciupik A, Dobkiewicz J, Pienazek J, Radek M, Szpalski M (2006) Evaluation of implantation procedure and research of influence of Inter-S dynamic tensioning stabilization system. In: XIII Meeting of the Neuroorthopedic Section of the Polish Society of Neurosurgery, Zakopane, April 27–29, 2006

  33. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed  Google Scholar 

  34. Swanson KE, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine 28:26–32. doi:10.1097/00007632-200301010-00008

    Article  PubMed  Google Scholar 

  35. Szpalski M, Michel F, Hayez JP (1996) Determination of trunk motion patterns associated with permanent or transient stenosis of the lumbar spine. Eur Spine J 5:332–337. doi:10.1007/BF00304349

    Article  PubMed  CAS  Google Scholar 

  36. Tsai KJ, Murakami H, Lowery GL, Hutton WC (2006) A biomechanical evaluation of an interspinous device (Coflex) used to stabilize the lumbar spine. J Surg Orthop Adv 15:167–172

    PubMed  Google Scholar 

  37. Verhoof OJ, Bron JL, Wapstra FH, Van Royen BJ (2008) High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J 17:188–192. doi:10.1007/s00586-007-0492-x

    Article  PubMed  Google Scholar 

  38. Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Blood E, Hanscom B, Herkowitz H, Cammisa F, Albert T, Boden SD, Hilibrand A, Goldberg H, Berven S, An H (2008) Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med 358:794–810. doi:10.1056/NEJMoa0707136

    Article  PubMed  CAS  Google Scholar 

  39. Wiseman CM, Lindsey DP, Fredrick AD, Yerby SA (2005) The effect of an interspinous process implant on facet loading during extension. Spine 30:903–907. doi:10.1097/01.brs.0000158876.51771.f8

    Article  PubMed  Google Scholar 

  40. Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, Implicito DA, Martin MJ, Johnson DR, Skidmore GA, Vessa PP, Dwyer JW, Puccio ST, Cauthen JC, Ozuna RM (2005) A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine 30:1351–1358. doi:10.1097/01.brs.0000166618.42749.d1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Foundation for the Advancement of Chiropractic Education and Chiropractic Biophysics Non-Profit, Inc. for their support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gunzburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunzburg, R., Szpalski, M., Callary, S.A. et al. Effect of a novel interspinous implant on lumbar spinal range of motion. Eur Spine J 18, 696–703 (2009). https://doi.org/10.1007/s00586-009-0890-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-0890-3

Keywords

Navigation