Skip to main content
Log in

Footprint mismatch in lumbar total disc arthroplasty

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

An Erratum to this article was published on 03 December 2008

Abstract

Lumbar disc arthroplasty has become a popular modality for the treatment of degenerative disc disease. The dimensions of the implants are based on early published geometrical measurements of vertebrae; the majority of these were cadaver studies. The fit of the prosthesis in the intervertebral space is of utmost importance. An undersized implant may lead to subsidence, loosening and biomechanical failure due to an incorrect center of rotation. The aim of the present study was to measure the dimensions of lumbar vertebrae based on CT scans and assess the accuracy of match in currently available lumbar disc prostheses. A total of 240 endplates of 120 vertebrae were included in the study. The sagittal and mediolateral diameter of the upper and lower endplates were measured using a digital measuring system. For the levels L4/L5 and L5/S1, an inappropriate size match was noted in 98.8% (Prodisc L) and 97.6% (Charite) with regard to the anteroposterior diameter. Mismatch in the anterior mediolateral diameter was noted in 79.3% (Prodisc L) and 51.2% (Charite) while mismatch in the posterior mediolateral diameter was observed in 91.5% (Prodisc L) and 78% (Charite) of the endplates. Surgeons and manufacturers should be aware of the size mismatch of currently available lumbar disc prostheses, which may endanger the safety and efficacy of the procedure. Larger footprints of currently available total disc arthroplasties are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banse X, Devpgelaer J, Munting E, Delloye C, Cornu O, Grynpas M (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571. doi:10.1016/S8756-3282(01)00425-2

    Article  PubMed  CAS  Google Scholar 

  2. Berry JL, Moran JM, Berg WS, Steffee AD (1987) A morphometric study of human lumbar and selected thoracic vertebrae. Spine 12:362–367. doi:10.1097/00007632-198705000-00010

    Article  PubMed  CAS  Google Scholar 

  3. Bertagnoli R, Yue JJ, Shah RV, Nanieva R, Pfeiffer F, Fenk-Mayer A et al (2005) The treatment of disabling multilevel lumbar discogenic low back pain with total disc arthroplasty utilizing the ProDisc prosthesis: a prospective study with 2-year minimum follow-up. Spine 30(19):2192–2199. doi:10.1097/01.brs.0000181061.43194.18

    Article  PubMed  Google Scholar 

  4. Cinotti G, David T, Postacchini F (1996) Results of disc prosthesis after a minimum follow-up period of 2 years. Spine 21:995–1000. doi:10.1097/00007632-199604150-00015

    Article  PubMed  CAS  Google Scholar 

  5. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26:E122–E129. doi:10.1097/00007632-200103150-00004

    Article  PubMed  CAS  Google Scholar 

  6. Gilad I, Nissan M (1985) Sagittal radiographic measurements of the cervical and lumbar vertebrae in normal adults. Br J Radiol 58(695):1031–1034

    Article  PubMed  CAS  Google Scholar 

  7. Gilad I, Nissan M (1985) Sagittal evaluation of elemental geometrical dimensions of human vertebrae. J Anat 143:115–120

    PubMed  CAS  Google Scholar 

  8. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26(8):889–896

    Article  PubMed  CAS  Google Scholar 

  9. Grant JP, Oxland TR, Dvorak MF, Fisher CG (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20(5):1115–1120. doi:10.1016/S0736-0266(02)00039-6

    Article  PubMed  CAS  Google Scholar 

  10. Hollowell JP, Vollmer DG, Wilson CR, Pintar FA, Yoganandan N (1996) Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine 21(9):1032–1036. doi:10.1097/00007632-199605010-00007

    Article  PubMed  CAS  Google Scholar 

  11. Huang RC, Girardi FP, Cammisa FP, Wright TM (2003) The implication of constrained in lumbar total disc replacement. J Spinal Disord 16:412–417

    Google Scholar 

  12. Labrom RD, Tan JS, Reilly CW, Tredwell SJ, Fisher CG, Oxland TR (2005) The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 30(19):556–561. doi:10.1097/01.brs.0000181053.38677.c2

    Article  Google Scholar 

  13. Leary SP, Regan JJ, Lanman TH, Wagner WH (2007) Revision and explantation strategies involving the CHARITE lumbar artificial disc replacement. Spine 32(9):1001–1011. doi:10.1097/01.brs.0000260794.73938.93

    Article  PubMed  Google Scholar 

  14. Mayer HM (2005) Total lumbar disc replacement. J Bone Joint Surg Br 87(8):1029–1037. doi:10.1302/0301-620X.87B8.16151 Review

    Article  PubMed  CAS  Google Scholar 

  15. Nissan M, Gilad I (1984) The cervical and lumbar vertebrae—an anthropometric model. Eng Med 13(3):111–114. doi:10.1243/EMED_JOUR_1984_013_030_02 No abstract available

    Article  PubMed  CAS  Google Scholar 

  16. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17(3):299–306

    Article  PubMed  CAS  Google Scholar 

  17. Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12(4):413–420. doi:10.1007/s00586-002-0505-8

    Article  PubMed  Google Scholar 

  18. Polikeit A, Ferguson SJ, Nolte LP, Orr T (2003) The importance of the endplate for interbody cages in the lumbar spine. Eur Spine J 12:556–561. doi:10.1007/s00586-003-0556-5

    Article  PubMed  Google Scholar 

  19. Punt IM, Visser VM, van Rhijn LW, Kurtz SM, Antonis J, Schurink GW et al (2008) Complications and reoperations of the SB Charité lumbar disc prosthesis: experience in 75 patients. Eur Spine J 17(1):36–43. doi:10.1007/s00586-007-0506-8

    Article  PubMed  Google Scholar 

  20. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175. doi:10.1007/BF02058659

    Article  PubMed  CAS  Google Scholar 

  21. Scoles PV, Linton AE, Latimer B, Levy ME, Digiovanni BF (1988) Vertebral body and posterior element morphology: the normal spine in middle life. Spine 13(10):1082–1086. doi:10.1097/00007632-198810000-00002

    Article  PubMed  CAS  Google Scholar 

  22. Siepe CJ, Mayer HM, Heinz-Leisenheimer M, Korge A (2007) Total lumbar disc replacement: different results for different levels. Spine 32(7):782–790. doi:10.1097/01.brs.0000259071.64027.04

    Article  PubMed  Google Scholar 

  23. Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparartion on the compression strength of interbody fusion constructs. Spine 25:1077–1084. doi:10.1097/00007632-200005010-00007

    Article  PubMed  CAS  Google Scholar 

  24. Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR (2005) Interbody device shape and size are important to strengthen the vertebra–implant interface. Spine 30(6):638–644. doi:10.1097/01.brs.0000155419.24198.35

    Article  PubMed  Google Scholar 

  25. Van Ooij A, Oner FC, Verbout AJ (2003) Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. J Spinal Disord Tech 16:369–383

    PubMed  Google Scholar 

  26. White AAIII, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  27. Zhou SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP (2000) Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images. Eur Spine J 9(3):242–248. doi:10.1007/s005860000140

    Article  PubMed  CAS  Google Scholar 

  28. Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GO 3rd, Haider TT et al (2007) Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine 32(11):1155–1162. doi:10.1097/BRS.0b013e318054e377 discussion 1163

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bach Christian Michael.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00586-008-0837-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaela, G., Denise, H., Liebensteiner, M. et al. Footprint mismatch in lumbar total disc arthroplasty. Eur Spine J 17, 1470–1475 (2008). https://doi.org/10.1007/s00586-008-0780-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0780-0

Keywords

Navigation