Skip to main content
Log in

In vitro analysis of circumferential joint replacement, including bilateral facet joint replacement with lateral lumber disc prosthesis: a parametric investigation of disc sizing

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Lateral lumbar disc prosthesis (LLDP) is an innovative device used to restore motion in select patients through a lateral retroperitoneal approach. No in vitro biomechanical studies have been published. Further, the potential for in toto circumferential joint restoration when use of this anterior disc is combined with facet replacement remains unqualified but signifies a potentially interesting clinical direction.

Methods

Researchers conducted a biomechanical feasibility study of an LLDP designed to investigate parameters of disc sizing used with bilateral facet joint replacement in a cadaveric model. Tested constructs at L4–L5 included (1) intact, (2) LLDP, (3) LLDP + wide discectomy, (4) LLDP + bilateral facetectomy, and (5) LLDP + bilateral facet joint replacement (BFJR). Investigators tested instrumented constructs (2–5) with an LLDP at compact-fit and lax-fit heights and used raw data to perform statistical analysis by repeated measures analysis of variance (ANOVA), along with Student–Newman–Keuls post hoc analysis (p ≤ 0.05).

Results

Increased height of the LLDP resulted in significantly less motion compared with intact. Widening the discectomy while using lax-fit sizing led to motion similar to intact in flexion–extension. As expected, motion was greater with lax-fit height than with compact-fit height in all loading modes and constructs, as is noted with a widened discectomy. The L4–L5 center of rotation was maintained regardless of placement of the LLDP.

Conclusions

After bilateral facetectomy, reconstruction of the three-joint complex achieved by combining the LLDP with BFJR may provide a viable alternative to current clinical treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29(17):1938–1944

    Article  Google Scholar 

  2. Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 90(2 Suppl):163–169

    CAS  PubMed  Google Scholar 

  3. Kepler CK, Sharma AK, Huang RC, Meredith DS, Girardi FP, Cammisa FP Jr, Sama AA (2012) Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine 16(4):329–333

    Article  PubMed  Google Scholar 

  4. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg 91(1 Suppl):60–64

    CAS  PubMed  Google Scholar 

  5. Tiusanen H, Seitsalo S, Osterman K, Soini J (1995) Retrograde ejaculation after anterior interbody lumbar fusion. Eur Spine J 4(6):339–342

    Article  CAS  PubMed  Google Scholar 

  6. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976) 35(26 Suppl):S302–S311

    Article  Google Scholar 

  7. Cappuccino A, Cornwall GB, Turner AW, Fogel GR, Duong HT, Kim KD, Brodke DS (2010) Biomechanical analysis and review of lateral lumbar fusion constructs. Spine (Phila Pa 1976) 35(26 Suppl):S361–S367

    Article  Google Scholar 

  8. Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13(2):260–266

    Article  PubMed  Google Scholar 

  9. Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L (2011) Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years’ follow-up. J Neurosurg Spine 14(1):38–45

    Article  PubMed  Google Scholar 

  10. Marchi LM, Oliveira L, Coutinho E, Pimenta L (2012) The importance of the anterior longitudinal ligament in lumbar disc arthroplasty: 36-month follow-up experience in extreme lateral total disc replacement. Int J Spine Surg 6:18–23

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tohmeh AG, Smith WD (2015) Lumbar total disc replacement by less invasive lateral approach: a report of results from two centers in the US IDE clinical trial of the XL TDR(R) device. Eur Spine J 24(Suppl 3):331–338

    Article  PubMed  Google Scholar 

  12. Yong-Hing K, Kirkaldy-Willis WH (1983) The pathophysiology of degenerative disease of the lumbar spine. Orthop Clin North Am 14(3):491–504

    CAS  PubMed  Google Scholar 

  13. Käfer W, Cakir B, Midderhoff S, Reichel H, Wilke HJ (2014) Circumferential dynamic stabilization of the lumbar spine: a biomechanical analysis. Eur Spine J 23(11):2230–2239

    Article  Google Scholar 

  14. Agarwala A, Bucklen B, Muzumdar A, Moldavsky M, Khalil S (2012) Do facet screws provide the required stability in lumbar fixation? A biomechanical comparison of the Boucher technique and pedicular fixation in primary and circumferential fusions. Clin Biomech (Bristol, Avon) 27(1):64–70

    Article  Google Scholar 

  15. Bartanusz V, Muzumdar A, Hussain M, Moldavsky M, Bucklen B, Khalil S (2011) Spinal instrumentation after complete resection of the last lumbar vertebra: an in vitro biomechanical study after L5 spondylectomy. Spine (Phila Pa 1976) 36(13):1017–1021

    Article  Google Scholar 

  16. Lee JK, Gomez J, Michelsen C, Kim Y, Moldavsky M, Chinthakunta SR, Khalil S (2013) In vitro biomechanical study to quantify range of motion, intradiscal pressure, and facet force of 3-level dynamic stabilization constructs with decreased stiffness. Spine (Phila Pa 1976) 38(22):1913–1919

    Article  Google Scholar 

  17. Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22(3):257–265

    Article  Google Scholar 

  18. Pimenta L, Turner A, Oliveira L, Marchi L, Cornwall B (2015) Controlled motion with the XL-TDR lateral-approach lumbar total disk replacement: in vitro kinematic investigation. J Neurol Surg A Cent Eur Neurosurg 76(2):133–138

    PubMed  Google Scholar 

  19. Pearcy MJ, Bogduk N (1988) Instantaneous axes of rotation of the lumbar intervertebral joints. Spine (Phila Pa 1976) 13(9):1033–1041

    Article  CAS  Google Scholar 

  20. Schmidt H, Midderhoff S, Adkins K, Wilke HJ (2009) The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4–5 segment. Eur Spine J 18(11):1695–1705

    Article  PubMed  PubMed Central  Google Scholar 

  21. Galbusera F, Bellini CM, Zweig T, Ferguson S, Raimondi MT, Lamartina C, Brayda-Bruno M, Fornari M (2008) Design concepts in lumbar total disc arthroplasty. Eur Spine J 17(12):1635–1650

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wilke HJ, Schmidt R, Richter M, Schmoelz W, Reichel H, Cakir B (2012) The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation. Eur Spine J 21(Suppl 5):S577–S584

    Article  PubMed  Google Scholar 

  23. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine (Phila Pa 1976) 28(20):S110–S117

    Article  Google Scholar 

  24. Guyer RD, Pettine K, Roh JS, Dimmig TA, Coric D, McAfee PC (2014) Comparison of 2 lumbar total disc replacements: results of a prospective, randomized, controlled, multicenter Food and Drug Administration trial with 24-month follow-up. Spine (Phila Pa 1976) 39(12):925–931

    Article  Google Scholar 

  25. Lee CS, Lee DH, Hwang CJ, Kim H, Noh H (2014) The effect of a mismatched center of rotation on the clinical outcomes and flexion-extension range of motion: lumbar total disk replacement using Mobidisc at a 5.5-year follow-up. J Spinal Disord Tech 25:148–153

    Article  Google Scholar 

  26. McAfee PC, Cunningham B, Holsapple G, Adams K, Blumenthal S, Guyer RD, Dmietriev A, Maxwell JH, Regan JJ, Isaza J (2005) A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes. Spine (Phila Pa 1976) 30(14):1576–1583 (discussion E388–E390)

    Article  Google Scholar 

  27. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine (Phila Pa 1976) 26(6):E122–E129

    Article  CAS  Google Scholar 

  28. Crawford NR, Peles JD, Dickman CA (1998) The spinal lax zone and neutral zone: measurement techniques and parameter comparisons. J Spinal Disord 11(5):416–429

    Article  CAS  PubMed  Google Scholar 

  29. Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 5(4):390–396 (discussion 397)

    Article  CAS  PubMed  Google Scholar 

  30. Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila Pa 1976) 19(12):1371–1380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dolores Matthews, MEd, ELS, for assistance in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Moldavsky.

Ethics declarations

Conflict of interest

Globus Medical, Inc., provided funding and test facilities for the study. MM, NK, MH, and BSB are paid employees of Globus Medical, Inc. PN has nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moldavsky, M., Neumann, P., Klocke, N. et al. In vitro analysis of circumferential joint replacement, including bilateral facet joint replacement with lateral lumber disc prosthesis: a parametric investigation of disc sizing. Eur Spine J 26, 785–793 (2017). https://doi.org/10.1007/s00586-016-4793-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4793-9

Keywords

Navigation