Skip to main content
Log in

Morphological changes in the human cervical intervertebral disc post trauma: response to fracture-type and degeneration grade over time

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

In the first 24 h post-intervertebral disc (IVD) trauma, up to 75 % cell death has been reported. In addition, burst fractures cause post-traumatic disc degeneration by elevated pro-apoptotic and pro-inflammatory gene transcription. Moreover, some patients have pre-trauma degenerative disc disease. The aim of the study was to assess histological changes and cell-death over a time period of up to 1 year caused by mechanical and structural factors.

Methods

116 anterior portions of IVDs of the cervical spine were studied histologically by light microscopy and ultrastructurally by transmission electron microscopy (TEM). The group was investigated with regard to three main parameters: fracture mechanism (compressive vs. tensile/shear loads), degeneration grade (low vs. high) and endplate fracture (with vs. without). Disc architecture (e.g. ruptures) was studied histologically. Cell morphology was examined ultrastructurally to quantify cell-death, healthy and balloon cells. According to ultrastructural observations, two time-groups (up to 6 days vs. later) were established. Statistical analyses were carried out within and between time-groups.

Results

Histological changes were obvious in the annulus fibrosus where ruptures with haematoma were replaced by granulation tissue. Significant differences in cell-death were seen in the first few days due to different loads. In contrast to the more degenerated segments, low degenerated ones revealed significantly less cell death with time post-trauma. Interestingly, no difference was found between groups after the sixth day. Cell-death (mean 44 % for all investigated groups) remained high after day 6 post-trauma.

Conclusion

IVDs retrieved from low grade degenerated segments revealed a significant recovery, with less cell-death and a partially restored disc matrix, although cell-death remained high. Long-term clinical studies of stabilized segments arising from different fracture mechanisms are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and Pathology of Human Intervertebral Disc. J Bone Jt Surg 88-A:10–14

  2. Böhler L (1937) Die Technik der Knochenbehandlung. Band 1. 5. Auflage. Verlag Wilhelm Maudrich Wien

  3. Smith JW, Wamsley R (1951) Experimental Incision of the Intervertebral Disc. J Bone Joint Surg 33B:612–625

    Google Scholar 

  4. Melrose J, Gosh P, Taylor TKF, Hall A, Osti OL, Vernon-Roberts B, Fraser RD (1992) A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res 10:665–676

    Article  PubMed  CAS  Google Scholar 

  5. Melrose J, Shu C, Young C, Ho R, Smith MM, Gooden B, Dart A, Podadera J, Appleyard RC, Little CB (2012) Mechanical destabilization induced by controlled annular incision of the intervertebral disc dysregulates metalloproteinase expression and induces disc degeneration. Spine 37:18–25

    Article  PubMed  Google Scholar 

  6. Haschtmann D, Stoyanov JV, Gédet P, Ferguson S (2008) Vertebral endplate trauma induces disc cell apoptosis and promotes degeneration in vitro. Eur Spine J 17:289–299

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dudli S, Haschtmann D, Ferguson SJ (2012) Fracture of vertebral endplates, but not equienergetic impact load, promotes disc degeneration in vivo. J Orthop Res 30:809–816

    Article  PubMed  Google Scholar 

  8. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on magnitude and duration of spinal loading. Spine 25:1477–1483

    Article  PubMed  CAS  Google Scholar 

  9. Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9:265–277

    Article  PubMed  CAS  Google Scholar 

  10. Sitte I, Kathrein A, Pfaller K, Pedross F, Roberts S (2009) Intervertebral disc cell death in the porcine and human injured cervical spine following trauma: a histological and ultrastructural study. Spine 34:131–140

    Article  PubMed  Google Scholar 

  11. Sitte I, Kathrein A, Pedross F, Freund MC, Pfaller K, Archer CW (2012) Morphological changes in disc herniation in the lower cervical spine: an ultrastructural study. Eur Spine J 21:1396–1409

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ghadially FN (1997) Ultrastructural pathology of cell and matrix, 4th edn, 4th edn. Butterworth-Heinemann, Boston, Oxford, Johannesburg, Melbourne, New Delhi, Singapore

    Google Scholar 

  13. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of the thoracic and lumbar spine. Eur Spine J 3:184–201

    Article  PubMed  CAS  Google Scholar 

  14. Benneker LM, Heini PF, Anderson SE, Alini M, Ito K (2006) Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J 14:27–35

    Article  Google Scholar 

  15. Romeis B (1968) Mikroskopische Technik. 16. Auflage. ed. R. Oldenbourg-Verlag, München-Wien

  16. David H (1978) Cellular Pathobiology. In: Johannessen JV (ed) Electron Microscopy in Human Medicine, vol 2. McGraw-Hill, New York, pp 114–124

    Google Scholar 

  17. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Van Cruchten S, Van den Broeck W (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31:214–223

    Article  PubMed  Google Scholar 

  19. Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y (1998) The process of ultrastructural changes from nuclei to apoptotic body. Vichows Arch 433:443–447

    Article  CAS  Google Scholar 

  20. Farber E (1994) Programmed cell death: necrosis versus apoptosis. Mod Pathol 7:605–609

    PubMed  CAS  Google Scholar 

  21. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in the tissue kinetics. Br J Cancer 26:237–239

    Article  Google Scholar 

  22. Dudli S, Ferguson SJ, Haschtmann D (2014) Severity and pattern of posttraumatic intervertebral disc degeneration depends on type of injury. Spine J 14:1256–1264

    Article  PubMed  Google Scholar 

  23. Sitte I, Kathrein A, Klosterhuber M, Lindtner RA, Neururer SB, Rauch S, Kuhn V, Schmoelz W (2014) Morphological similarities after compression trauma of bovine and human intervertebral discs. Do disc cells have a chance of surviving? J Orthop Res 32:1198–1207

    Article  PubMed  Google Scholar 

  24. Battie MC, Videman T, Kaprio J, Gibbons LE, Manninen H, Saarela J, Peltonen L (2009) The Twin Spine Study: contributions to a changing view of disc degeneration. Spine J 9:47–59

    Article  PubMed  Google Scholar 

  25. Brown S, Melrose J, Caterson B, Roughly P, Eisenstein SM, Roberts S (2012) A comparative evaluation of the small leucine-rich proteoglycans of pathological human intervertebral discs. Eur Spine J 21:154–159

    Article  PubMed Central  Google Scholar 

  26. Dudli S, Haschtmann D, Ferguson SJ (2014) Persistent degenerative changes in the intervertebral disc after burst fracture in an in vitro model mimicking physiological post-traumatic conditions. Eur Spine J (ahead of print)

  27. Grunhagen T, Shurazi-Adl A, Fairbanks CT, Urban JPG (2011) Intervertebral disk nutrition; a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 42:465–477

    Article  PubMed  Google Scholar 

  28. Heyde C-E, Tschoeke S, Hellmuth M, Hostmann A, Ertel W, Oberholzer A (2006) Trauma induces apoptosis in the human thoracolumbar intervertebral discs. BMC Clin Pathol 6:5–14

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tschoeke SK, Hellmuth M, Hostmann A, Robinson Y, Ertel W, Oberholzer A, Heyde CH (2008) Apoptosis of human intervertebral discs after trauma compares to degenerated discs involving both receptor-mediated and mitochondrial-dependent pathways. J Orthop Res 26:999–1006

    Article  PubMed  CAS  Google Scholar 

  30. Verlaan JJ, Somers I, Wouter JA, Oner FC (2013) Clinical and radiological results 6 years after treatment of traumatic burst fractures with pedicle screw instrumentation and balloon assisted end plate reduction. Spine J (ahead of print)

  31. Rajasekaran S, Vidyadhara S, Subbiah M, Kamath V, Karrunanithi R, Shetty AP, Venkateswaran K, Babu M, Meenakshi J (2010) A study of effects of in vivo mechanical forces on human lumbar discs with scoliotic disc as a biological model: results from serial postcontrast diffusion studies, histopathology and biochemical analysis of twenty-one human lumbar scoliotic discs. Spine 35:1930–1943

    Article  PubMed  CAS  Google Scholar 

  32. Sitte I, Kathrein A, Pfaller K, Pedross F, Klosterhuber M, Lindtner RA, Zenner J, Ferraris L, Meier O, Koller H (2013) Morphological differences in adolescent idiopathic scoliosis: a histological and ultrastructural investigation. Spine 38:1672–1680

    Article  PubMed  Google Scholar 

  33. Bibby SRS, Fairbank JCT, Urban MR, Urban JPG (2002) Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 27:2220–2228

    Article  PubMed  Google Scholar 

  34. Paul CPL, Schoorl T, Zuiderbaan HA, Doulabi BZ, van derrVeen AJ, van der Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG (2013) Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLOS One 8:e62411 (serial online)

  35. Gawri R, Rosenzweig DH, Krock E, Quellet JA, Stone LS, Quinn TM, Haglund L (2014) High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors with disc degeneration and pain. Arthritis Res Ther 16:R21

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kokubo Y, Ushida K, Kobayashi S, Yayama T, Sato R, Nakahma H, Takamura T, Mwaka E, Orwotho N, Bangirana A, Baba H (2008) Herniated and spondylotic intervertebral discs of human cervical spine: histological and immunohistochemical findings in 500 enbloc surgical samples. J Neurosurg Spine 9:285–295

    Article  PubMed  Google Scholar 

  37. Holm S, Baranto A, Holm KA, Ekström L, Swärd L, Hansson T, Hansson HA (2007) Reactive changes in the adolescent porcine spine with disc degeneration due to endplate injury. Vet Comp Orthop Traumatol 20:12–17

    PubMed  CAS  Google Scholar 

  38. Sivan S, Tsitron E, Wachtel E, Roughly PJ, Sakkee N, van der Ham F, Degroot J, Roberts S, Maroudas A (2006) Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem 28:1309–1314

    Google Scholar 

  39. Sivan S, Wachtel E, Tsitron E, Sakkee N, van der Ham F, Degroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283:8796–8801

    Article  PubMed  CAS  Google Scholar 

  40. Daniaux H, Seykora P, Genelin A, Lang T, Kathrein A (1991) Application of posterior plating and modifications in thoracolumbar spine injuries. Indications, techniques and results. Spine 16:125–133

    Article  Google Scholar 

  41. Knop C, Fabian HF, Bastian L, Blauth M (2001) Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine 26:88–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by ÖNB (Österreichische Nationalbank, Jubiläumsfonds—Project Numbers: ÖNB 8590; ÖNB 10032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Sitte.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest.

Ethics commission

UN 1052; UN 1653; UN 3849. The study and recruitment procedures were approved by the Ethics Committee, Medical University of Innsbruck. All participants gave written informed consent after full explanation of study procedures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitte, I., Klosterhuber, M., Lindtner, R.A. et al. Morphological changes in the human cervical intervertebral disc post trauma: response to fracture-type and degeneration grade over time. Eur Spine J 25, 80–95 (2016). https://doi.org/10.1007/s00586-015-4089-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4089-5

Keywords

Navigation