Skip to main content
Log in

A poly(propylene glycol-co-fumaric acid) based bone graft extender for lumbar spinal fusion: in vivo assessment in a rabbit model

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Study design: An animal model of posterolateral intertransverse process lumbar spinal fusion compared fusion rates amongst autologous bone (group 1), a porous, bioabsorbable, scaffold based on the biopolymer, poly(propylene glycol-co-fumaric acid) (PPF) (group 2), and a combination of autograft and the bioabsorbable scaffold (group 3). Objectives: To evaluate the feasibility of augmenting spinal fusion with an osteoconductive and bioabsorbable scaffold as an alternative or as an adjunct, i.e., an extender, to autograft. Summary of background data: There is little preclinical data on applications of bioabsorable bone graft extenders in spinal fusion. Methods: New Zealand White rabbits underwent single-level lumbar posterolateral intertransverse process fusion. Animals were treated with one of three materials: autologous bone (group 1), a bioabsorable material based on PPF (group 2), and the PPF biopolymer scaffold with autologous bone graft (group 3). Animals were evaluated at 6 weeks, and fusion was evaluated by manual palpation, and radiographic, histologic, and histomorphometric analyses. Results: Radiographic and manual palpation showed evidence of fusion in all three groups. Histomorphometric measurement of bone ingrowth showed the highest quantity of new bone in group 3 (91%), followed by group 1 (72%) and group 2 (53%). Conclusions: Results of this study suggested that osteoconductive bioabsorbable scaffolds prepared from PPF might be used as an autograft extender when applied as an adjunct to spinal fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akamaru T, Suh D, Boden SD, Kim HS, Minamide A, Louis-Ugbo J (2003) Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine 28(5):429–434

    Article  PubMed  Google Scholar 

  2. Bauer TW, Muschler GF (2000) Bone graft materials: an overview of the basic science. Clin Orthop Rel Res 371:10–27

    Article  Google Scholar 

  3. Boden SD (2000) Biology of lumbar spine fusion and use of bone graft substitutes: present, future, and next generation. Tissue Eng 6:383–399

    Article  PubMed  Google Scholar 

  4. Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 27(16S):S26–S33

    Article  PubMed  Google Scholar 

  5. Boden SD, Kang J, Sandhu H, et al (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial. Spine 27:2662–2673

    Article  PubMed  Google Scholar 

  6. Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model Radiographic histologic, and biomechanical healing characteristics. Spine 20:412–420

    PubMed  Google Scholar 

  7. Bondre SP, Lewandrowski KU, Cattaneo MV, et al (2000) Biodegradable foam coating of cortical allografts for improved osteoconduction. Tissue Eng 6:217–227

    Article  PubMed  Google Scholar 

  8. Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Spine 16(Suppl 6):S277–S282

    PubMed  Google Scholar 

  9. Cahoon S, Boden SD, Gould KG, et al (1996) Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender. J Med Primatol 25:333–338

    PubMed  Google Scholar 

  10. Hile DD, Kirker-Head CA, Doherty SA, et al (2003) Mechanical evaluation of a porous bone graft substitute based on poly(propylene glycol-co-fumaric acid). Appl Biomater/J Biomed Mater Res 66B(1):311–317

    Article  Google Scholar 

  11. Hollinger EH, Trawick RH, Boden SD, et al (1996) Morphology of the lumbar intertransverse process fusion mass in the rabbit model: a comparison between two bone graft materials-rhBMP-2 and autograft. J Spinal Discord 9:125–128

    Google Scholar 

  12. Ishaug SL, Crane GM, Miller MJ, et al (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36(1):17–28

    Article  PubMed  Google Scholar 

  13. Kandziora F, Bail H, Schmidmaier G, et al (2002) Bone morphogenetic protein-2 application by a poly(D,L-lactide)-coated interbody cage: in vivo results of a new carrier for growth factors. J Neurosurg (Spine 1) 97:40–48

    Google Scholar 

  14. Kandziora F, Pflugmacher R, Kleemann R, et al (2002) Biomechanical analysis of biodegradable interbody fusion cages augmented with poly(propylene glycol-co-fumaric acid). Spine 27(15):1644–1651

    Article  PubMed  Google Scholar 

  15. Kandziora F, Schmidmaier G, Bail H, et al (2002) IGF-1 and TGF-β1 application by a poly(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine. Spine 27(16):1710–1723

    Article  Google Scholar 

  16. Lewandrowski KU, Cattaneo MV, Gresser JD, et al (1999) Effect of a poly(propylene fumarate) foaming cement on healing of critical size bone defects. Tissue Eng 5:305–316

    PubMed  Google Scholar 

  17. Lewandrowski KU, Gresser JD, Bondre S, et al (2000) Developing porosity of poly(propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats. J Biomater Sci Polym Ed 11(8):879–889

    Article  PubMed  Google Scholar 

  18. Lewandrowski KU, Gresser JD, Wise DL, et al (2000) Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials 21(8):757–764

    Article  PubMed  Google Scholar 

  19. Lewandrowski KU, Hile DD, Thompson BMJ, et al (2003) Quantitative measures of a porous poly(propylene fumarate) bone graft extender. Tissue Eng 9:85–93

    Article  PubMed  Google Scholar 

  20. Martin GJ, Boden SD, Titus L, Scarborough NL (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24(7):637–745

    Article  PubMed  Google Scholar 

  21. Rapoff AJ, Ghanayem AJ, Zdeblick TA (1997) Biomechanical comparison of posterior lumbar interbody fusion cages. Spine 22(20):2375–2379

    Article  PubMed  Google Scholar 

  22. Rauzzino MJ, Shaffrey CI, Nockels RP, et al (1999) Anterior lumbar fusion with titanium threaded and mesh interbody. Neurosurg Focus 7(6):1–11

    Google Scholar 

  23. Simmons JW, Hadjipavlou AG, Shors EC (1999) Artificial bone grafting materials. In: Szpalski M, Gunzburg R, Pope H (eds) Lumbar segmental instability. Lippincott–Raven, Philadelphia, pp 241–247

    Google Scholar 

  24. Thomson RC, Yaszemski MJ, Powers JM, et al (1998) Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials 19(21):1935–1943

    Article  PubMed  Google Scholar 

  25. Toribatake Y, Hutton WC, Boden SD, et al (1997) Revascularization of the fusion mass in a posterolateral intertransverse spinal fusion process. Trans Orthop Res Soc 22:192

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Joseph Alroy, DVM, Associate Professor in Pathology, Tufts University Schools of Medicine and Veterinary Medicine for his assistance in the histologic analyses of this study. This work was supported in part by NIH/NIAMS Grant No. 1 R43 AR049626-01A1 (to DJT) and NIH/NIDCR Grant No. 2 R44 DE12290-02A2 (to DDH). The device(s)/drug(s) that is/are the subject of this manuscript is/are not FDA-approved for this indication and is/are not commercially available in the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Hile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hile, D.D., Kandziora, F., Lewandrowski, KU. et al. A poly(propylene glycol-co-fumaric acid) based bone graft extender for lumbar spinal fusion: in vivo assessment in a rabbit model. Eur Spine J 15, 936–943 (2006). https://doi.org/10.1007/s00586-005-1001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-1001-8

Keywords

Navigation