Skip to main content

Bioceramics and Biocomposites in Spine Surgery

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Spinal arthrodesis is an essential procedure in spine surgery which is performed to fuse two or more vertebrae. Success rates and outcomes strictly depend on substrates used to achieve a solid bony fusion of the vertebral segments. Autologous bone graft, usually harvested from the iliac crest or even locally, is traditionally considered the gold standard for its potential to lead to bone formation and integrate within surrounding tissues, although donor-site morbidity cannot be disregarded. This has led to develop alternative strategies for spinal arthrodesis, such as allogenic bone graft (both human and animal, also known as xenograft), demineralized bone matrix (DMB), synthetic and biodegradable bioceramics, local administration of bone morphogenetic proteins (BMPs), and products derived from peripheral blood (platelet-rich plasma, PRP) and bone marrow (bone marrow aspirate, BMA). While autograft exhibits ideal osteoconductive, osteoinductive, and osteogenic properties, other options must be combined to obtain constructs that own all the features.

The design of an ideal bioscaffold that emulates the natural bone structure and function is still challenging. New biofabrication technologies of hybrid organic/inorganic materials with controlled architecture associated with osteoinductive growth factors can overcome the limitations of the current alternates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    Article  Google Scholar 

  2. Reid JJ, Johnson JS, Wang JC (2011) Challenges to bone formation in spinal fusion. J Biomech 44:213–220

    Article  Google Scholar 

  3. Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF (2015) Bone graft substitutes for spine fusion: a brief review. World J Orthop 6:449–456

    Google Scholar 

  4. Vadala G, Papapietro N, Di Martino A, Denaro V (2011) Bioscaffold and biotechnologies in spine surgery. GIOT 37:S191–S198

    Google Scholar 

  5. Lupparelli S et al (2004) Advances in technology and spinal fusion: a clinician’s perspective. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Yaszemski MJ, White AA III (eds) Advances in spinal fusion: molecular science, biomechanics and clinical management. Marcel Dekker, New York, pp 497–530

    Google Scholar 

  6. Sherwood P et al (2004) The morbidity of autogenous bone graft donation. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Yaszemski MJ, White AA III (eds) Advances in spinal fusion: molecular science, biomechanics and clinical management. Marcel Dekker, New York, pp 665–679

    Google Scholar 

  7. Chau AM, Mobbs RJ (2009) Bone graft substitutes in anterior cervical discectomy and fusion. Eur Spine J 18:449–464. doi:10.1007/s00586-008-0878-4

    Article  Google Scholar 

  8. Sengupta DK, Truumees E, Patel CK, Kazmierczak C, Hughes B, Elders G, Herkowitz HN (2006) Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine 31:985–991

    Article  Google Scholar 

  9. Berven S, Tay BK, Kleinstueck FS, Bradford DS (2001) Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. Eur Spine J 10:S169–S177. doi:10.1007/s005860100270

    Article  Google Scholar 

  10. Buttermann GR, Glazer PA, Bradford DS (1996) The use of bone allografts in the spine. Clin Orthop Relat Res 324:74–85

    Article  Google Scholar 

  11. Jagannathan J, Shaffrey CI, Oskouian RJ, Dumont AS, Herrold C, Sansur CA, Jane JA (2008) Radiographic and clinical outcomes following single-level anterior cervical discectomy and allograft fusion without plate placement or cervical collar. J Neurosurg Spine 8:420–428. doi:10.3171/SPI/2008/8/5/420

    Article  Google Scholar 

  12. Floyd T, Ohnmeiss D (2000) A meta-analysis of autograft versus allograft. Eur Spine J 9:398–403. doi:10.1007/s005860000160

    Article  Google Scholar 

  13. Zdeblick TA, Ducker TB (1991) The use of freeze-dried allograft bone for anterior cervical fusions. Spine 16:726–729. doi:10.1097/00007632-199107000-00006

    Article  Google Scholar 

  14. Bishop RC, Moore KA, Hadley MN (1996) Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg Spine 85:206–210

    Article  Google Scholar 

  15. Schlosser MJ, Schwarz JP, Awad JN, Antezana DF, Poetscher AW, Yingling J, Long DM, Davis RF (2006) Anterior cervical discectomy and fusion with allograft and anterior plating: a report on 219 patients/469 levels with a minimum of 2-year follow-up. Neurosurg Q 16:183–186. doi:10.1097/01.wnq.0000 214028.77731.f2

    Article  Google Scholar 

  16. Yue WM, Brodner W, Highland TR (2005) Long-term results after anterior cervical discectomy and fusion with allograft and plating: a 5- to 11-year radiologic and clinical follow-up study. Spine 30:2138–2144. doi:10.1097/01.brs.0000180479.63092.17

    Article  Google Scholar 

  17. Deutsch H, Haid R, Rodts G Jr, Mummaneni PV (2007) The decision-making process: allograft versus autograft. Neurosurgery 60:S98–S102. doi:10.1227/01.NEU.0000249221.50085.AD

    Article  Google Scholar 

  18. Suchomel P, Barsa P, Buchvald P, Svobodnik A, Vanickova E (2004) Autologous versus allogenic bone grafts in instrumented anterior cervical discectomy and fusion: a prospective study with respect to bone union pattern. Eur Spine J 13:510–515. doi:10.1007/s00586-003-0667-z

    Article  Google Scholar 

  19. Bauermeister A, Maatz R (1957) A method of bone maceration. Results of animal experiments. J Bone Joint Surg Am 39:153–166

    Google Scholar 

  20. Savolainen S, Usenius JP, Hernesniemi J (1994) Iliac crest versus artificial bone grafts in 250 cervical fusions. Acta Neurochir (Wien) 129:54–57. doi:10.1007/BF01400873

    Article  Google Scholar 

  21. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A:454–464

    Google Scholar 

  22. Hsu WK, Nickoli MS, Wang JC, Lieberman JR, An HS, Yoon ST, Youssef JA, Brodke DS, McCullough CM (2012) Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery. Global Spine J 2:239–248

    Article  Google Scholar 

  23. Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29:660–666. doi:10.1097/01.BRS.0000116588.17129.B9

    Article  Google Scholar 

  24. Miyazaki M, Tsumura H, Wang JC, Alanay A (2009) An update on bone substitutes for spinal fusion. Eur Spine J 18:783–799. doi:10.1007/s00586-009-0924-x

    Article  Google Scholar 

  25. Cama G (2014) Calcium phosphate cements for bone regeneration. In: Dubruel P, Van Vlierberghe S (eds) Biomaterials for bone regeneration novel techniques and applications. Woodhead/Elsevier, Cambridge, UK

    Google Scholar 

  26. Korkusuz P, Korkusuz F (2004) Hard tissue-biomaterial interactions. In: Yaszemski MJ, Trantolo DJ, Lewandrowski K-U, Hasirci V, Altobelli DE, Wise DL (eds) Biomaterials in orthopedics. Marcel Dekker, New York

    Google Scholar 

  27. Tay BK, Le AX, Heilman M, Lotz J, Bradford DS (1998) Use of a collagen-hydroxyapatite matrix in spinal fusion. A rabbit model. Spine 23:2276–2281

    Article  Google Scholar 

  28. Orii H, Sotome S, Chen J, Wang J, Shinomiya K (2005) Beta-tricalcium phosphate (beta-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. J Med Dent Sci 52:51–57

    Google Scholar 

  29. Epstein NE (2006) A preliminary study of the efficacy of beta tricalcium phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 19:424–429

    Article  Google Scholar 

  30. Dai LY, Jiang LS (2008) Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine 33:1299–1304

    Article  Google Scholar 

  31. Neen D, Noyes D, Shaw M, Gwilym S, Fairlie N, Birch N (2006) Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft. Spine 31:E636–E640

    Article  Google Scholar 

  32. Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P (2015) Bone morphogenetic protein signaling in bone homeostasis. Bone. doi:10.1016/j.bone.2015.05.025

    Google Scholar 

  33. Mueller TD, Nickel J (2012) Promiscuity and specificity in BMP receptor activation. FEBS Lett 586:1846–1859

    Article  Google Scholar 

  34. Wrana JL, Tran H, Attisano L, Arora K, Childs SR, Massagué J, O’Connor MB (1994) Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Mol Cell Biol 14:944–950

    Article  Google Scholar 

  35. Guo X, Wang XF (2009) Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 19:71–88

    Article  Google Scholar 

  36. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  Google Scholar 

  37. Spivak JM, Hasharoni A (2001) Use of hydroxyapatite in spine surgery. Eur Spine J 10:S197–S204. doi:10.1007/s005860100286

    Article  Google Scholar 

  38. Claytor B, Theiss S (2004) Overcoming chemical inhibition of spine fusion. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Yaszemski MJ, White AA III (eds) Advances in spinal fusion: molecular science, biomechanics and clinical management. Marcel Dekker, New York, pp 90–97

    Google Scholar 

  39. Vadala G, Di Martino A, Tirindelli MC, Denaro L, Denaro V (2008) Use of autologous bone marrow cells concentrate enriched with platelet-rich fibrin on corticocancellous bone allograft for posterolateral multilevel cervical fusion. J Tissue Eng Regen Med 2:515–520

    Article  Google Scholar 

  40. Alden TD, Pittman DD, Beres EJ, Hankins GR, Kallmes DF, Wisotsky BM, Kerns KM, Helm GA (1999) Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 90:109–114. doi:10.3171/ spi.1999.90.1.0109

    Article  Google Scholar 

  41. Tarantino R, Donnarumma P, Mancarella C, Rullo M, Ferrazza G, Barrella G, Martini S, Delfini R (2004) Posterolateral arthrodesis in lumbar spine surgery using autologous platelet-rich plasma and cancellous bone substitute: an osteoinductive and osteoconductive effect. Global Spine J 4:137–142

    Article  Google Scholar 

  42. Kapur TA, Kadiyala S, Urbahns DJ, Bruder SP (2004) Autologous growth factors and progenitor cells as effective components in bone grafting products for spine. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Yaszemski MJ, White AA III (eds) Advances in spinal fusion: molecular science, biomechanics and clinical management. Marcel Dekker, New York, pp 375–389

    Google Scholar 

  43. Walsh WR, Loefler A, Nicklin S, Arm D, Stanford RE, Yu Y, Harris R, Gillies RM (2004) Spinal fusion using an autologous growth factor gel and a porous resorbable ceramic. Eur Spine J 13:359–366

    Article  Google Scholar 

  44. Siebrecht MA, De Rooij PP, Arm DM, Olsson ML, Aspenberg P (2002) Platelet concentrates increases bone ingrowth into porous hydroxyapatite. Orthopedics 25:169–172

    Google Scholar 

  45. Carreon LY, Glassman SD, Anekstein Y, Puno RM (2005) Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine 30:E243–E247

    Article  Google Scholar 

  46. Weiner BK, Patel NM, Walker MA (2007) Outcomes of decompression for lumbar spinal canal stenosis based upon preoperative radiographic severity. J Orthop Surg Res 2:3

    Article  Google Scholar 

  47. Castro FP Jr (2004) Role of activated growth factors in lumbar spinal fusions. J Spinal Disord Tech 17:380–384

    Article  Google Scholar 

  48. Galibert P (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic verte- broplasty. Neurochirurgie 33:166–168

    Google Scholar 

  49. Lieberman IH, Dudeney S, Reinhardt M (2001) Initial outcome and efficacy of kyphoplasty in the treatment of painful osteoporotic vertebral compression fractures. Spine 26:1631–1638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca VadalĂ  .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

VadalĂ , G., Russo, F., Ambrosio, L., Denaro, V. (2016). Bioceramics and Biocomposites in Spine Surgery. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_44

Download citation

Publish with us

Policies and ethics