Skip to main content
Log in

Turbulence structure of the boundary layer below marine clouds in the SOFIA experiment

  • Published:
Annales Geophysicae

Abstract

The SOFIA (Surface of the Ocean: Flux and Interaction with the Atmosphere) experiment, included in the ASTEX (Atlantic Stratocumulus Transition EXperiment) field program, was conducted in June 1992 in the Azores region in order to investigate air-sea exchanges, as well as the structure of the atmospheric boundary layer and its capping low-level cloud cover. We present an analysis of the vertical structure of the marine atmospheric boundary layer (MABL), and especially of its turbulence characteristics, deduced from the aircraft missions performed during SOFIA. The meteorological situations were characteristic of a temperate latitude under anticyclonic conditions, i.e., with weak to moderate winds, weak surface sensible heat flux, and broken capping low-altitude cloud cover topped by a strong trade inversion. We show that the mixed layer, driven by the surface fluxes, is decoupled from the above cloud layer. Although weak, the surface buoyancy flux, and the convective velocity scale deduced from it, are relevant for scaling the turbulence moments. The mixed layer then follows the behavior of a continental convective boundary layer, with the exception of the entrainment process, which is weak in the SOFIA data. These results are confirmed by conditional sampling analysis, which shows that the major turbulence source lies in the buoyant moist updrafts at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Réchou, A., Durand, P., Druilhet, A. et al. Turbulence structure of the boundary layer below marine clouds in the SOFIA experiment. Annales Geophysicae 13, 1075–1086 (1995). https://doi.org/10.1007/s00585-995-1075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00585-995-1075-y

Keywords

Navigation