Skip to main content
Log in

Structures and characteristics of the windy atmospheric boundary layer in the South China Sea region during cold surges

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations (period <1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances (1 min<period <10 min) are anisotropic with rather strong coherency. However, in the windy atmospheric boundary layer at sea, compared with that over land, there are some pronounced differences: (1) the average horizontal speed is almost independent of height, and the vertical velocity is positive in the lower marine atmospheric boundary layer; (2) the vertical flux of horizontal momentum is nearly independent of height in the low layer indicating the existence of a constant flux layer, unlike during strong wind over the land surface; (3) the kinetic energy and friction velocity of turbulent fluctuations are larger than those of gusty disturbances; (4) due to the independence of horizontal speed to height, the horizontal speed itself (not its vertical gradient used over the land surface) can be used as the key parameter to parameterize the turbulent and gusty characteristics with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L., 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11 429–11 441, doi: 10.1029/92JC00876.

    Article  Google Scholar 

  • Andreas, E. L., 1998: A new sea spray generation function for wind speeds up to 32 ms−1. J. Phys. Oceanogr., 28, 2175–2184.

    Article  Google Scholar 

  • Andreas, E. L., 2010: Spray-Mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608–619.

    Article  Google Scholar 

  • Andreas, E. L., and J. DeCosmo, 1999: Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

    Chapter  Google Scholar 

  • Cheng, X. L., Q. C. Zeng, F. Hu, and Z. Peng, 2007: Gustiness and coherent structure of strong wind in the atmospheric boundary layer. Climatic and Environmental Research, 12(3), 227–243. (in Chinese)

    Google Scholar 

  • Cheng, X. L., Q. C. Zeng, and F. Hu, 2011: Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts. J. Geophys. Res., 116, D06101, doi: 10.1029/2010JD015081.

    Google Scholar 

  • Cheng, X. L., Q. C. Zeng, and F. Hu, 2012a: Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer. J. Geophys. Res., 117, D08113, doi: 10.1029/2011JD017191.

    Google Scholar 

  • Cheng, X. L., F. Hu, and Q. C. Zeng, 2012b: Simulation of wind gust structure in the atmospheric boundary layer with Lattice Boltzmann Method. Chinese Science Bulletin, 57, 1196–1203.

    Article  Google Scholar 

  • Cheng, X. L., Q. C. Zeng, and F. Hu, 2012c: Stochastic modeling the effect of wind gust on dust entrainment during sand storm. Chinese Science Bulletin, 57, 3595–3602, doi: 10.1007/s11434-012-5230-z.

    Article  Google Scholar 

  • DeCosmo, J., 1991: Air-sea exchange of momentum, heat and water vapor over whitecap sea states. Ph.D. thesis, Univ. of Wash., Seattle, 212 pp.

    Google Scholar 

  • Ding, T., W.-H. Qian, and Z.-W. Yan, 2009: Characteristics and changes of cold surge events over China during 1960–2007. Atmos. Oceanic Sci. Lett., 2, 339–344.

    Google Scholar 

  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys., 2, 1–52.

    Google Scholar 

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. The Global Atmosphere and Ocean System, 2, 121–142.

    Google Scholar 

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk. SSSR, 30, 299–303. Reprinted in Proc. R. Soc. London A, 434, 9–13 (1991).

    Google Scholar 

  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 82–85.

    Article  Google Scholar 

  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Interscience, New York, 239 pp.

    Google Scholar 

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst, 24, 163–187.

    Google Scholar 

  • Prandtl, L., 1904: Uber Flussigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen des dritten internationalen Mathematiker-Kongresses, Heidelberg, 489–491, Leipzig. (English trans., 2001: On the motion of fluids with very little friction, in Early Developments of Modern Aerodynamics, J. A. D. Ackroyd, B. P. Axcell, A. I. Ruban, eds., Butterworth-Heinemann, Oxford, UK, 77–84.)

    Google Scholar 

  • Smith, M. H., P. M. Park, and I. E. Consterdine, 1993: Marine aerosol concentrations and estimated fluxes over the sea. Quart. J. Roy. Meteor. Soc., 119, 809–824.

    Article  Google Scholar 

  • Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer. Prentice Hall, Englewood Cliffs, New Jersey, 317 pp.

    Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Norwell, Mass, 738 pp.

    Book  Google Scholar 

  • Sutton, O. G., 1953: Micrometeorology. McGraw-Hill, New York, 333 pp.

    Google Scholar 

  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127–150.

    Article  Google Scholar 

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

    Book  Google Scholar 

  • Zeng, Q. C., X. L. Cheng, and F. Hu, 2007a: The mechanism of soil erosion and dust emission under the action of nonsteady strong wind with descending motion and gust wind. Climatic and Environmental Research, 12(3), 244–250. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., F. Hu, and X. L. Cheng, 2007b: The mechanism of dust entrainment by gustwind. Climatic and Environmental Research, 12(3), 251–255. (in Chinese)

    Google Scholar 

  • Zeng Q.-C., X. L. Cheng, F. Hu, and Z. Peng, 2010: Gustiness and coherent structure of strong wind and their role in the dust emission and entrainment. Adv. Atmos. Sci., 27(1), 1–13, doi: 10.1007/s00376-009-8207-3.

    Article  Google Scholar 

  • Zeng, X., Q. Zhang, D. Johnson, and W.-K. Tao, 2002: Parameterization of wind gustiness for the computation of ocean surface fluxes at different spatial scales. Mon. Wea. Rev., 130, 2125–2133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Ling Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, XL., Huang, J., Wu, L. et al. Structures and characteristics of the windy atmospheric boundary layer in the South China Sea region during cold surges. Adv. Atmos. Sci. 32, 772–782 (2015). https://doi.org/10.1007/s00376-014-4228-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4228-7

Key words

Navigation