Skip to main content

Advertisement

Log in

Ca2+ sensitivity of skinned ventricular cardiac muscle and expression of cardiac myosin heavy chain isoforms in hibernating versus active frogs

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Hibernation is a biological phenomenon enabling animals to endure hypothermia. This study was designed to find the changes in myosin heavy chain (MHC) isoforms and their relationship to calcium sensitivity in frog ventricular muscle during hibernation. MHC profile was determined by SDS-4% polyacrylamide gel electrophoresis in active and hibernating frogs for different intervals of time (10, 20, 30, and 60 days). Calcium sensitivity of Triton-skinned ventricular muscle fiber bundles was determined. Compared with active and hibernated frogs for 10 and 20 days, hibernated frogs for 30 and 60 days expressed significant amount (p < 0.05) of MHC type β (15. 3 ± 3.8%, 35.6 ± 1.5%, respectively). This change in myosin heavy chain profile seen in long period of hibernation was associated with significant decrease (p < 0.05) in sensitivity of skinned myofilaments to Ca2+ where skinned ventricular muscle taken from hibernating frogs for 30 and 60 days p Ca value were 5.52 and 5.50, respectively, while active frog showed p Ca = 5.67. In conclusion, expression of increased amount of β-MHC in hibernated frog for 30 days and more was associated with a decrease in contractile responses of skinned ventricular myocardium to calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpert NR, Brosseau C, Federico A, Krenz M, Robbins J, Warshaw DM (2002) Molecular mechanics ofmouse cardiac myosin isoforms. Am J Physiol Heart Circ Physiol 283:H1446–H1454

    Article  CAS  PubMed  Google Scholar 

  • American Heart Association (2005) American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 112:IV-136–IV-138

    Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle contraction. Gen Physiol 50:197–210

    Article  Google Scholar 

  • Barni S, Bernini F, Fenoglio C, Reggiani C (1994) Adaptations of the frog myocardium to conditions of natural hibernation: morphofunctional changes. Boll Zool 61:317–324

    Article  Google Scholar 

  • Donohoe PH, West TG, Boutilier RG (1998) Respiratory, metabolic and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs. Am J Physiolo 43(R):704–710

    Google Scholar 

  • Gupta MP (2007) Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol 43:388–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herron TJ, Korte FS, McDonald KS (2001) Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. Am J Physiol Heart Circ Physiol 281:H1217–H1222

    Article  CAS  PubMed  Google Scholar 

  • Korte FS, Herron TJ, Rovetto MJ, McDonald KS (2005) Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts. Am J Physiol Heart Circ Physiol 289:H801–H812

    Article  CAS  PubMed  Google Scholar 

  • Krenz M, Robbins J (2004) Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol 44:2390–2397

    Article  CAS  PubMed  Google Scholar 

  • Lakatta EG, Guarnieri T (1993) Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J Cardiovasc Electrophysiol 4:473–489

    Article  CAS  PubMed  Google Scholar 

  • Lampe JW, Becker LB (2011) State of the art in therapeutic hypothermia. Annu Rev Med 62:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XC, Wei L, Zhang GQ, Bai ZL, Hu YY, Zhou P, Bai SH, Chai Z, Lakatta EG, Hao XM, Wang SQ (2011) Ca2+ cycling in heart cells from ground squirrels: adaptive strategies for intracellular Ca2+ homeostasis. PLoS One 6:e24787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litten RZ, Martin BJ, Low RB, Alpert NR (1982) Altered myosinisozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circ Res 50:856–864

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wohlfart B, Johansson BW (1990) Effects of low temperature on contraction in papillary muscles from rabbit, rat and hedgehog. Cryobiology 27:539–546

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang LCH, Belke DD (1991) Effect of low temperature on the cytosolic free Ca2+ in rat ventricular myocytes. Cell Calcium 12:11–18

    Article  CAS  PubMed  Google Scholar 

  • Metzger JM, Wahr PA, Michele DE, Albayya F, Westfall MV (1999) Effects of myosin heavy chain isoform switching on Ca2-activated tension development in single adult cardiac myocytes. Circ Res 84:1310–1317

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390

    Article  CAS  PubMed  Google Scholar 

  • Mohammad MAM, Abdulwahab MS, Mohammad MJM, El shboul O, Ezzat WR (2014) Cardiac myosin heavy chains in mice treated with NG-nitro-arginine methyl ester and thyroxine. Comp Clin Pathol 23:1639–1644

    Article  CAS  Google Scholar 

  • Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE, Russell J, Spiegelenberg SR, Huybregts MA, Visser FC, de Jong JW, van der Velden J, Stienen GJM (2005a) Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res 65:221–229

    Article  CAS  PubMed  Google Scholar 

  • Narolska NA, Eiras S, van Loon RB, Boontje NM, Zaremba R, Spiegelen Berg SR, Stooker W, Huybregts MA, Visser FC, van der Velden J, Stienen GJ (2005b) Myosin heavy chain composition and the economy of contraction in healthy and diseased human myocardium. J Muscle Res Cell Motil 26:39–48

    Article  CAS  PubMed  Google Scholar 

  • Nelson OL, Robbins CT (2015) Cardiovascular function in large to small hibernators: bears to ground squirrels. J Comp Physiol B 185:265–279

    Article  PubMed  Google Scholar 

  • Rocha PL, Branco LGS (1997) Cardiovascular, respiratory and metabolic responses to temperature and hypoxia of the winter frog Rana catesbeiana. Braz J Med Biol Res 30:125–131

    Article  CAS  PubMed  Google Scholar 

  • Rossmanith GH, Hamilton AM, Hoh JF (1995) Influence of myosin isoforms on tension cost and crossbridge kinetics in skinned rat cardiac muscle. Clin Exp Pharmacol Physiol 22:423–429

    Article  CAS  PubMed  Google Scholar 

  • Rundell VLM, Manaves V, Martin AF, de Tombe PP (2005) Impact of β-myosin heavy chain isoform expression on cross-bridge cycling kinetics. Am J Physiol Heart Circ Physiol 288:H896–H903

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    Article  CAS  PubMed  Google Scholar 

  • Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    Article  CAS  PubMed  Google Scholar 

  • Van der Velden J, Moorman AF, Stienen GJ (1998) Age-dependent changes in myosin composition correlate with enhanced economy of contraction in guinea-pig hearts. J Physiol 507:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SQ, Zhou ZQ (1999) Alpha-stat calibration of indo-1fluorescence and measurement of intracellular free calcium in rat ventricularcells at different temperatures. Life Sci 65:871–877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the deanship of scientific research (fund no. 56/2011) at Jordan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, M.A., Alqudah, M.A., Alhorani, R. et al. Ca2+ sensitivity of skinned ventricular cardiac muscle and expression of cardiac myosin heavy chain isoforms in hibernating versus active frogs. Comp Clin Pathol 26, 799–804 (2017). https://doi.org/10.1007/s00580-017-2449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-017-2449-8

Keywords

Navigation