Skip to main content

Advertisement

Log in

Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp.

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arsenic (As) pollution of soil reduces the growth and reproductive potential of plants. Silicon (Si) and arbuscular mycorrhizal (AM) fungi play significant roles in alleviating adverse effects of As stress. However, studies are scant regarding alleviative effects of Si in pigeonpea (Cajanus cajan L. Millsp.) because legumes are considered low Si-accumulators. We investigated the individual as well as synergistic potential of Si with two AM species (M1-Claroideoglomus etunicatum and M2-Rhizoglomus intraradices) in modulating soil properties, thereby improving growth and productivity of pigeonpea genotype Pusa 2001 grown in AsV and AsIII challenged soils. Both As species hampered the establishment of AM symbiosis, thus, reducing nutrient uptake, growth and yield, with AsIII more toxic than AsV. Exogenously applied Si and AM species enhanced soil glomalin and phosphatases activity, hence decreased metal bioavailability in soil, increased plant nutrient acquisition, biomass and chlorophylls; with maximum benefits provided by M2, closely followed by Si and least by M1. These amendments boosted the activities of starch hydrolytic enzymes (α-, β-amylase, starch phosphorylase) in plants, along with a simultaneous increase in total soluble sugars (TSS). This enhanced sugar accumulation directly led to improved reproductive attributes, more efficiently by M2 and Si than by M1. Moreover, there was a substantial increase in proline biosynthesis due to significantly enhanced activities of its biosynthetic enzymes. Additionally, combined applications of Si and AM, especially +Si+M2, complemented each other where AM enhanced Si uptake, while Si induced mycorrhization, suggesting their mutual and beneficial roles in ameliorating metal(loid) toxicity and achieving sustainability in pigeonpea production under As stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha, (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Env Res Pub He 15(1):59

    Article  CAS  Google Scholar 

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37(2):6

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Ashraf M, Hakeem KR, Azooz MM, Rasool S, Chandna R, Akram NA (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact 9(1):1–9

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2013) The role of mycorrhiza in the reclamation of degraded lands in arid environments. In: Shabbir A, Faisal KT, Mahmoud AA (eds) Developments in soil classification, land use planning and policy implications. Springer, Dordrecht, pp 823–836

    Chapter  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Oller ALW, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris Plant Physiol 24(1):1

    CAS  PubMed  Google Scholar 

  • Azeem W, Ashraf M, Shahzad SM, Imtiaz M, Akhtar M, Rizwan MS (2017) Phosphate-arsenate relations to affect arsenic concentration in plant tissues, growth, and antioxidant efficiency of sunflower (Helianthus annuus L.) under arsenic stress. Environ Sci Pollut Res 24(31):24376–24386

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bazghaleh N, Hamel C, Gan Y, Tar’an B, Knight JD, (2018) Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Can J Microbiol 64(4):265–275

    Article  CAS  PubMed  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernfield P (1955) In: Colowick S, Kaplan NO (eds) Methods of enzymology, Academic Press New York 1:149

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanki AU, Sonah H, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3):71

    Article  CAS  PubMed Central  Google Scholar 

  • Bisht A, Bhalla S, Kumar A, Kaur J, Garg N (2021) Gene expression analysis for selection and validation of suitable housekeeping gene(s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. Plant Physiol Biochem 162:592–602

    Article  CAS  PubMed  Google Scholar 

  • Bolandnazar S, Aliasgarzad N, Neishabury MR, Chaparzadeh N (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic 114(1):11–15

  • Brackhage C, Huang JH, Schaller J, Elzinga EJ, Dudel EG (2014) Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci Rep 4(1):1–7

  • Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F (2012) Beneficial elements. In: Marschner p (ed) Marschner's mineral nutrition of higher plants. Elsevier, London, pp 249–269

  • Castro MCR, Urrea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Sci Total Environ 503:122–132

    Article  CAS  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57(5):810–818

    Article  CAS  PubMed  Google Scholar 

  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171(2):1009–1023

    PubMed  PubMed Central  Google Scholar 

  • Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Plants 16(1):59–68

  • Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Trivedi PK, Corpas FJ, Barroso JB, Chakrabarty D (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83(4–5):303–315

    Article  CAS  PubMed  Google Scholar 

  • Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FA, Nesi AN, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3):752–762

    Article  CAS  PubMed  Google Scholar 

  • Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuča K, Torequl Islam M, Verma R (2020) Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agronomy 10(6):815

    Article  CAS  Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138(1):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42(2):233–239

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  • Estefan G, Sommer R, Ryan J (2013) Methods of soil, plant, and water analysis. A Manual for the West Asia and North Africa Region 3:65–119

    Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2019) http://www.fao.org/faostat/en/#data/QC

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41(5):1201–1232

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400

    Article  CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37(5):851–866

    Article  CAS  Google Scholar 

  • Frew A, Powell JR, Allsopp PG, Sallam N, Johnson SN (2017) Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil 419(1):423–433

    Article  CAS  Google Scholar 

  • Gangola MP, Ramadoss BR (2018) Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH (ed) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Academic Press, pp 17–38

    Chapter  Google Scholar 

  • Gao WQ, Wang P, Wu QS (2019) Functions and application of glomalin-related soil proteins: a review. Sains Malays 48(1):111–119

    Article  CAS  Google Scholar 

  • García-Ríos M, Fujita T, LaRosa PC, Locy RD, Clithero JM, Bressan RA, Csonka LN (1997) Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proc Natl Acad Sci 94(15):8249–8254

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78(3):371–387

  • Garg N, Bharti A (2018) Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28(8):727–737

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Cheema A (2020) Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. Ecotoxicol Environ Saf 207:111196

  • Garg N, Singh S (2018a) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37(1):46–63

  • Garg N, Singh S (2018b) Mycorrhizal inoculations and silicon fortifications improve rhizobial symbiosis, antioxidant defense, trehalose turnover in pigeon pea genotypes under cadmium and zinc stress. Plant Growth Regul 86(1):105–119

    Article  CAS  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gomes MP, Nogueira MDOG, Castro EMD, Soares ÂM (2011) Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sci Agric 68(5):566–573

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Moradtalab N, Aliasgharzad N, Eshaghi Z, Feizy J (2018) Silicon influences growth and mycorrhizal responsiveness in strawberry plants. Physiol Mol Biol Plants 24(6):1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21(2):117–129

    Article  CAS  PubMed  Google Scholar 

  • He L, Li C, Liu R (2017) Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. Mycorrhiza 27(6):525–535

    Article  CAS  PubMed  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1992) Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgrass prairie forbs. Can J Bot 70(8):1521–1528

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    Article  CAS  Google Scholar 

  • Irigoyen JJ, Einerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84(1):55–60

    Article  CAS  Google Scholar 

  • Kabir AH, Hossain MM, Khatun MA, Mandal A, Haider SA (2016) Role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L.). Front Plant Sci 7:1117

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241(4):847–860

  • Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8(1):1–16

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    Article  CAS  PubMed  Google Scholar 

  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors-a review. Water Res 140:403–414

    Article  CAS  PubMed  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Leport L, Turner NC, Davies SL, Siddique KHM (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24(3):236–246

    Article  Google Scholar 

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65(17):4747–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyubun YV, Pleshakova EV, Mkandawire M, Turkovskaya OV (2013) Diverse effects of arsenic on selected enzyme activities in soil–plant–microbe interactions. J Hazard Mater 262:685–690

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Maglovski M, Gersi Z, Rybansky L, Bardacova M, Moravcikova J, Bujdos M, Dobrikova A, Apostolova E, Kraic J, Blehova A, Matusikova I (2019) Effect of nutrition on wheat photosynthetic pigment responces to arsenic stress. Pol J Environ Stud 28(3):1821–1829

    Article  Google Scholar 

  • Malekzadeh P, Farshian SH, Ordubadi B (2012) Interaction of arbuscular mycorrhizal fungus (Glomus intraradices and Glomus etunicatum) with tomato plants grown under copper toxicity. Afr J Biotechnol 11(46):10555–10567

    Article  CAS  Google Scholar 

  • Marguí E, Hidalgo M, Queralt Mitjans I (2007) XRF spectrometry for trace element analysis of vegetation samples

  • Markovich O, Kumar S, Cohen D, Addadi S, Fridman E, Elbaum R (2019) Silicification in leaves of sorghum mutant with low silicon accumulation. SILICON 11(5):2385–2391

    Article  CAS  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 525–532

  • Mazelis M, Fowden L (1969) Conversion of ornithine into proline by enzymes from germinating peanut cotyledons. Phytochemistry 8(5):801–809

    Article  CAS  Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22(9):1156–1158

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  CAS  PubMed  Google Scholar 

  • Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Kundu S, Rao AS (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci, India Sect b: Biol Sci 84(3):505–518

    Article  CAS  Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Division (Mimeo), pp 23–89

  • Merwad ARM, Desoky ESM, Rady MM (2018) Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic 228:132–144

    Article  CAS  Google Scholar 

  • Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163(9):927–936

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Mattusch J, Wennrich R (2017) Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56(414):1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6(7):991–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79(1–2):35–46

    Article  CAS  PubMed  Google Scholar 

  • Moradtalab N, Hajiboland R, Aliasgharzad N, Hartmann TE, Neumann G (2019) Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9(1):41

    Article  CAS  Google Scholar 

  • Moreira H, Pereira SI, Marques AP, Rangel AO, Castro PM (2016) Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ Sci Pollut Res 23(7):6940–6950

    Article  CAS  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2017) Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L cv IET-4094). Ecotoxicol Environ Saf 145:449–456

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, Heidelberg, pp 215–243

    Chapter  Google Scholar 

  • Nelson DW, Sommers LE (1972) A simple digestion procedure for estimation of total nitrogen in soils and sediments. J Environ Qual 1(4):423–425

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE, Page AL (1982) Methods of Soil Analysis Part 2(1982):403–430

    Google Scholar 

  • Pahlich E, Joy KW (1971) Glutamate dehydrogenase from pea roots: purification and properties of the enzyme. Can J Biochem 49(1):127–138

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Praveen A, Pandey C, Ehasanullah K, Panthri M, Gupta M (2020) Silicon-mediated genotoxic alterations in Brassica juncea under arsenic stress: A comparative study of biochemical and molecular markers. Pedosphere 30(4):517–527

    Article  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Zhang Q, Pan J, Jiang S, Liu Y, Bahadur A, Peng Z, Yang Y, Feng H (2020) Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur J Soil Sci 71(1):84–92

    CAS  Google Scholar 

  • Rena AB, Splittstoesser WE (1975) Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. Phytochemistry 14(3):657–661

    Article  CAS  Google Scholar 

  • Richardson S (2017) Evaluating potential health effects of secondary drinking water contaminants. J Environ Health 80(4):40–43

    CAS  Google Scholar 

  • Ruscitti M, Arango M, Beltrano J (2017) Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor Exp Plant Physiol 29(1):37–49

  • Sánchez-Bermejo E, Castrillo G, Del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Puerto YL, Munoz R, Camara C, Paz-Ares J, Alonso-Blanco C, Leyva A (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5(1):1–9

    Article  CAS  Google Scholar 

  • Sanglard LM, Detmann KC, Martins SC, Teixeira RA, Pereira LF, Sanglard ML, Fernie AR, Araujo WL, DaMatta FM (2016) The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ Exp Bot 123:22–36

    Article  CAS  Google Scholar 

  • Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28(13–14):1245–1252

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162(8):854–864

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2014) Arsenic toxicity and tolerance mechanisms in crop plants. In: Pessarakli M (ed) Handbook of Plant and Crop Physiology. CRC Press, pp 762–811

    Google Scholar 

  • Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front Plant Sci 8:906

  • Sherene T (2017) Role of soil enzymes in nutrient transformation: A review. Bio Bull 3(1):109–131

    Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao D, Zhao FJ (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172(3):1708–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Yang S, Han D, Zhou Z, Li X, Liu Y, Zhang B (2018) Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity. Environ Sci Pollut Res 25(8):7638–7646

  • Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 1(1):35–46

    Article  CAS  Google Scholar 

  • Sil P, Das P, Biswas S, Mazumdar A, Biswas AK (2019) Modulation of photosynthetic parameters, sugar metabolism, polyamine and ion contents by silicon amendments in wheat (Triticum aestivum L.) seedlings exposed to arsenic. Environ Sci Pollut Res 26(13):13630–13648

  • Singh R, Parihar P, Prasad SM (2018) Sulfur and calcium simultaneously regulate photosynthetic performance and nitrogen metabolism status in As-challenged Brassica juncea L. seedlings. Front Plant Sci 9:772

  • Smith SE, Read DJ (2010) The symbionts forming arbuscular mycorrhizas. Mycorrhizal Symbiosis 2:13–41

    Google Scholar 

  • Spagnoletti F, Lavado RS (2015) The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy 5(2):188–199

    Article  Google Scholar 

  • Suprasanna P, Nikalje GC, Rai AN (2016) Osmolyte accumulation and implications in plant abiotic stress tolerance. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: Emerging omics technologies. Springer, New Delhi, pp 1–12

    Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1(4):301–307

    Article  CAS  Google Scholar 

  • Tang T, Miller DM (1991) Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel, and arsenic. Commun Soil Sci Plant Anal 22(19–20):2037–2045

    Article  CAS  Google Scholar 

  • Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214(3):943–951

    Article  CAS  PubMed  Google Scholar 

  • Tränkner M, Tavakol E, Jákli B (2018) Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant 163(3):414–431

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Gangwar S, Prasad SM, Maurya JN, Chauhan DK (2014) Role of silicon in enrichment of plant nutrients and protection from biotic and abiotic stresses. In: Azooz MM, Tran LP (eds) Ahmad P, Wani MR. Improvement of crops in the era of climatic changes. Springer, New York, pp 39–56

    Google Scholar 

  • Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Serio CD, Maserti B, Guerrieri E, Balestrini R (2018) The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Front Plant Sci 9:1480

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759

    Article  PubMed  PubMed Central  Google Scholar 

  • Waring BG, Weintraub SR, Sinsabaugh RL (2014) Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117(1):101–113

    Article  CAS  Google Scholar 

  • Weatherley P (1950) Studies in the water relations of the cotton plant: I. The field measurement of water deficits in leaves. New Phytol 49(1):81–97

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198(1):97–107

    Article  CAS  Google Scholar 

  • Yamaji N, Sakurai G, Mitani-Ueno N, Ma JF (2015) Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc Natl Acad Sci 112(36):11401–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, He C, Huang L, Ban Y, Tang M (2017) The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12(8):e0182264. https://doi.org/10.1371/journal.pone.0182264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin N, Zhang Z, Wang L, Qian K (2016) Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ Sci Pollut Res 23(17):17840–17849

    Article  CAS  Google Scholar 

  • Yu Y, Zhang S, Huang H, Wu N (2010) Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi. Commun Soil Sci Plant Anal 41(6):735–743

    Article  CAS  Google Scholar 

  • Zhang X, Ren BH, Wu SL, Sun YQ, Lin G, Chen BD (2015) Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere 119:224–230

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34(2):455–472

    Article  CAS  Google Scholar 

  • Zhu Y, Guo J, Feng R, Jia J, Han W, Gong H (2016) The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant Soil 406(1):231–249

Download references

Acknowledgements

The authors gratefully acknowledge the Pulse Research Laboratory and Department of Microbiology of the Indian Agricultural Research Institute (IARI), New Delhi, India and The Energy and Research Institute (TERI), New Delhi, India, for providing the biological research material. We are sincerely thankful to the Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh, for technical support.

Funding

The authors are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India [09/135(0806)/2018-EMR-I] for providing financial assistance in undertaking the research.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author (NG) planned and designed the research experiments. The first author (SB) performed the experiments, collected the data, and analyzed it. The corresponding author (NG) monitored the experiments and gave final shape to the manuscript.

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

572_2021_1056_MOESM1_ESM.tif

Supplementary file1 ESM Fig. 1 Effect of silicon (Si) and two arbuscular mycorrhizal (AM) species-M1 (Claroideoglomus etunicatum) and M2 (Rhizoglomus intraradices) on a α-amylase in leaves and roots (mg maltose produced min−1 g−1 FW); b β-amylase in leaves and roots (mg maltose produced min−1 g−1 FW) and c starch phosphorylase in leaves and roots (µmol Pi liberated mg−1 protein min−1) of pigeonpea genotype Pusa 2001 under different levels of AsV (AsV20 – 20 mg kg−1 and AsV40 – 40 mg kg−1) and AsIII (AsIII4 – 4 mg kg−1 and AsIII8 – 8 mg kg−1) stress. Values represented are means of six replicates ± standard error (SE). Means followed by same letter do not differ significantly by Tukey’s HSD tests at p ≤ 0.05. Si–AM– = Si and AM absent; Si +  = Si present; M1 +  = M1 present; M2 +  = M2 present; Si + M1 +  = Si and M1 present; Si + M2 +  = Si and M2 present.(TIF 16998 KB)

572_2021_1056_MOESM2_ESM.tif

Supplementary file2 ESM Fig. 2 Effect of silicon (Si) and two arbuscular mycorrhizal (AM) species-M1 (Claroideoglomus etunicatum) and M2 (Rhizoglomus intraradices) on a starch in roots (mg g−1 FW) and b total soluble sugars (mg g−1 FW) in roots of pigeonpea genotype Pusa 2001 under different levels of AsV (AsV20 – 20 mg kg−1 and AsV40 – 40 mg kg−1) and AsIII (AsIII4 – 4 mg kg−1 and AsIII8 – 8 mg kg−1) stress. Values represented are means of six replicates ± standard error (SE). Means followed by same letter do not differ significantly by Tukey’s HSD tests at p ≤ 0.05. Si–AM– = Si and AM absent; Si +  = Si present; M1 +  = M1 present; M2 +  = M2 present; Si + M1 +  = Si and M1 present; Si + M2 +  = Si and M2 present.(TIF 17187 KB)

572_2021_1056_MOESM3_ESM.tif

Supplementary file3 ESM Fig. 3 Effect of silicon (Si) and two arbuscular mycorrhizal (AM) species-M1 (Claroideoglomus etunicatum) and M2 (Rhizoglomus intraradices) on a proline in roots (mg g−1 DW) and b proline dehydrogenase activity (ProDH; nkat mg−1 protein) in roots of pigeonpea genotype Pusa 2001 under different levels of AsV (AsV20 – 20 mg kg−1 and AsV40 – 40 mg kg−1) and AsIII (AsIII4 – 4 mg kg−1 and AsIII8 – 8 mg kg−1) stress. Values represented are means of six replicates ± standard error (SE). Means followed by same letter do not differ significantly by Tukey’s HSD tests at p ≤ 0.05. Si–AM– = Si and AM absent; Si +  = Si present; M1 +  = M1 present; M2 +  = M2 present; Si + M1 +  = Si and M1 present; Si + M2 +  = Si and M2 present.(TIF 14422 KB)

572_2021_1056_MOESM4_ESM.tif

Supplementary file4 ESM Fig. 4 Effect of silicon (Si) and two arbuscular mycorrhizal (AM) species-M1 (Claroideoglomus etunicatum) and M2 (Rhizoglomus intraradices) on a glutamate dehydrogenase activity (GDH; nkat mg−1 protein) in leaves and roots; b pyrroline-5-carboxylase synthetase activity (P5CS; nkat mg−1 protein) in leaves and roots and c ornithine aminotransferase activity (OAT; nkat mg−1 protein) in leaves and roots of pigeonpea genotype Pusa 2001 under different levels of AsV (AsV20 – 20 mg kg−1 and AsV40 – 40 mg kg−1) and AsIII (AsIII4 – 4 mg kg−1 and AsIII8 – 8 mg kg−1) stress. Values represented are means of six replicates ± standard error (SE). Means followed by same letter do not differ significantly by Tukey’s HSD tests at p ≤ 0.05. Si–AM– = Si and AM absent; Si +  = Si present; M1 +  = M1 present; M2 +  = M2 present; Si + M1 +  = Si and M1 present; Si + M2 +  = Si and M2 present.(TIF 16230 KB)

Supplementary file5 (DOCX 67 KB)

Supplementary file6 (DOCX 20 KB)

Supplementary file7 (DOCX 59 KB)

Supplementary file8 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, S., Garg, N. Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp.. Mycorrhiza 31, 735–754 (2021). https://doi.org/10.1007/s00572-021-01056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-021-01056-z

Keywords

Navigation