Skip to main content

Advertisement

Log in

Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand

    Google Scholar 

  • Aučina A, Rudawska M, Leski T, Ryliškis D, Pietras M, Riepšas E (2011) Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza 21:237–245

    Article  PubMed Central  PubMed  Google Scholar 

  • Bâ AM, Garbaye J, Dexheimer J (1991) Influence of fungal propagules during the early stade of the time sequence of ectomycorrhizal colonization on Afzelia africana Sm. seedlings. Can J Bot 66:2442–2447

    Article  Google Scholar 

  • Bâ A, Duponnois R, Moyersoen B, Diédhiou A (2012) Ectomycorrhizal symbiosis of tropical African trees. Mycorrhiza 22:1–29

    Article  PubMed  Google Scholar 

  • Bâ AM, Avril R, Bandou E, Sène S, Courtecuisse R, Sylla S, Diédhiou A (2014) Alleviation of salt stress by Scleroderma bermudense in Coccoloba uvifera seedlings. In: Bâ AM, McGuire KL, Diédhiou A (eds) Ectomycorrhizal symbioses in tropical and neotropical forests. Science Publishers, CRC Press, Enfield, New-Hampshire 03748, USA pp 164-185

  • Bandou E (2005) Diversité et fonctionnement des symbioses ectomycorhiziennes de Coccoloba uvifera (L) L. en situation de stress salin et hydrique. 36

  • Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Bâ AM (2006) The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16:559–565

    Article  CAS  PubMed  Google Scholar 

  • Bingham MA, Simard SW (2012) Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22:317–326

    Article  PubMed  Google Scholar 

  • Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Høiland K, Eidesen P (2014) Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 23:649–659

    Article  PubMed  Google Scholar 

  • Booth MG, Hoeksema JD (2010) Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91:2294–2302

    Article  PubMed  Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0 user’s guide and application persistent. http://purl.oclc.org/estimates

  • Courtecuisse R (2006) Liste préliminaire des Fungi recensés dans les îles françaises des Petites Antilles : Martinique, Guadeloupe et dépendances. I. Basidiomycètes lamellés et affines (Agaricomycetideae s.l.). Doc Mycol 34:81–140

    Google Scholar 

  • Courtecuisse R (2009) Référentiel taxinomique des Basidiomycètes de France métropolitaine. Office national des forêts; Société mycologique de France

  • Dabin B (1965) Application des dosages automatiques à l’analyse des sols. Cah Orstom Ser Pedol 3:335–366

    Google Scholar 

  • Diédhiou AG, Selosse MA, Galiana A, Diabaté M, Dreyfus B, Bâ AM, de Faria SM, Béna G (2010) Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ Microbiol 12:2219–2232

    PubMed  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods. Agronomy monograph No. 9 (2ed). American Society of Agronomy/Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Gehring CA, Mueller RC, Haskins KE, Rubow TK, Whutham TG (2014) Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism and susceptibility to herbivory: consequences for fungi and host plants. Front Microbiol. doi:10.3389/fmicb.2014.00306

    PubMed Central  PubMed  Google Scholar 

  • Guzmán G, Ramirez-Guillen F, Miller OK, Lodge DJ, Baroni TJ (2004) Scleroderma stellatum versus Scleroderma bermudense : the status of Scleroderma echinatum and the first record of Veligaster nitidum from the Virgins Islands. Mycologia 96:1370–1379

    Article  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Henkel T, Mayor J, Woolley L (2005) Mast fruiting and seedling survival of the ectomycorrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytol 167:543–556

    Article  PubMed  Google Scholar 

  • Henkel TW, Aime MC, Chin MM, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodivers Conserv 21:2195–2220

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Le Roux C, Muller F, Bouvet JM, Dreyfus B, Galiana A, Béna G, Bâ AM (2014) Genetic diversity patterns and functional traits of Bradyrhizobium strains associated with Pterocarpus officinalis Jacq. in Caribbean islands and Amazonian forest (French Guiana). Microb Ecol 201:1457–1468

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574

    Article  PubMed  Google Scholar 

  • McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL (2012) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812

    Article  PubMed  Google Scholar 

  • Miller OKJ, Lodge DJ, Baroni TJ (2000) New and interesting ectomycorrhizal fungi from Porto-Rico, Mona, and Guana islands. Mycologia 92:558–572

    Article  Google Scholar 

  • Newbery D, Alexander I, Rother J (2000) Does proximity to conspecific adults influence the establishment of ectomycorrhizal tree species in rain forest? New Phytol 147:401–409

    Article  Google Scholar 

  • Nieto MP, Carbone SS (2009) Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling. Mycorrhiza 19:91–98

    Article  Google Scholar 

  • Obase K, Tamai Y, Yajima T, Miyamoto T (2009) Mycorrhizal synthesis of four ectomycorrhizal fungi in potted Populus maximowiczii seedlings. Mycoscience 50:143–145

    Article  Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiãÿ M, Garnica S, Zuccaro A (2013) Enigmatic Sebacinales. Mycol Prog 12:1–27

    Article  Google Scholar 

  • Onguene N, Kuyper T (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza 12:13–17

    Article  CAS  PubMed  Google Scholar 

  • Parker M, Rousteau A (2014) Mosaic origins of Bradyrhizobium legume symbionts on the Caribbean island of Guadeloupe. Mol Phylogenet Evol 77:110–115

    Article  PubMed  Google Scholar 

  • Parrota JA (1994) Coccoloba uvifera (L.) L. Seagrape. Uva de playa. Resaech Note SOITF-SM-74. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment station. New Orleans 5

  • Peay K, Garbelotto M, Bruns T (2009a) Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547

    Article  Google Scholar 

  • Peay K, Kennedy PG, Davies SJ, Tan S, Bruns T (2009b) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

    Article  PubMed  Google Scholar 

  • Pegler DN (1983) Agaric flora of the Lesser Antilles. Royal Botanic Garden, London, 668

    Google Scholar 

  • Pešková V, Jaroslav L, Modlinger R (2013) Long term observation of mycorrhizal status and above-ground fungi fruiting body production in oak forest. Dendrobiology 69:99–110

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Richard F, Millot S, Gardes M, Selosse MA (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Rivière T, Diedhiou AG, Diabate M, Senthilarasu G, Natarajan K, Verbeken A, Buyck B, Dreyfus B, Bena G, Bâ AM (2007) Genetic diversity of ectomycorrhizal basidiomycetes from African and Indian tropical forests. Mycorrhiza 17:415–428

    Article  PubMed  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic press, London

    Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354

    Article  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J 4:465–471

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Teste F, Simard S, Durall D, Guy R, Berch S (2010) Net carbon transfert between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J Ecol 98:429–439

    Article  CAS  Google Scholar 

  • Thoen D, Bâ AM (1989) Ectomycorrhizas and putative ectomycorrhizal fungi of Afzelia africana Sm. and Uapaca guineensis Müll. Arg. in southern Senegal. New Phytol 113:549–559

    Article  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL et al (eds) Methods of soil analysis. American Society of Agronomy, Madison, pp 154–157

    Google Scholar 

  • Van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystem. J Ecol 97:1139–1150

    Article  Google Scholar 

  • Warren JM, Renée BJ, Meinzre FC, Eberhart JL (2008) Hydraulitic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by The Region of Guadeloupe. Part of the sequencing work was done using the grant “Diversité des champignons mycorhiziens des plantes” (DivMyc, to M.-A. Selosse) from the network Bibliothèque Du Vivant funded by the CNRS, the Museum National d’HistoireNaturelle and the INRA. We thank Jean Chabrol for help with sampling and identification of sporocarps, Marie-Pierre Dubois and Mathieu Sauve for help with the molecular typing, David Marsh for English corrections, and two anonymous referees for their comments. S. Séne received grants from the Institut de Recherche pour le Développement (IRD), the Ministry of Education and Researchof Senegal and the World Federation of Scientists (WFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadou Bâ.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Séne, S., Avril, R., Chaintreuil, C. et al. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles). Mycorrhiza 25, 547–559 (2015). https://doi.org/10.1007/s00572-015-0633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0633-8

Keywords

Navigation