Skip to main content
Log in

Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Abad P, Castagnone-Sereno P, Rosso MN, de Almeida EJ, Favery B (2009) Invasion, feeding and development. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 163–181

    Chapter  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Science + Business Media, the Netherlands, pp 61–97

  • Bird DMcK, Opperman CH, Williamson VM (2008) Plant infection by root-knot nematode. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer Verlag, Berlin, pp 1–13

    Google Scholar 

  • Byrd DW, Kirkpatrick JRT, Barker KR (1983) An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Caillaud M, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida EJ, Abad P, Rosso M, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  PubMed  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Curtis RHC, Robinson AF, Perry RN (2009) Hatch and host location. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 139–162

    Chapter  Google Scholar 

  • Dababat A, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–776

    Article  Google Scholar 

  • Dehne HW (1982) Interactions between vesicular–arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288:31–45

    Article  CAS  Google Scholar 

  • Ehwaeti ME, Fargette M, Phillips MS, Trudgill DL (1999) Host status differences and their relevance to damage by Meloidogyne incognita. Nematology 1:421–432

    Article  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Tollot M, Seddas PMA (2009) Dissection of genetic cell programmes driving early arbuscular mycorrhiza interactions. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas — functional processes and ecological impact. Springer Verlag, Berlin, pp 33–45

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  PubMed  CAS  Google Scholar 

  • Hol GWH, Cook R (2005) An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  • Hooper DJ, Hallman J, Subbotin S (2005) Methods for extraction, processing and detection of plant and soil nematodes. In: Luc M, Sikora R, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Wallingford, pp 53–86

    Chapter  Google Scholar 

  • Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumot M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant Soil 196:27–35

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defence response against the root-knot nematode Meloidogyne incognita in grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  PubMed  CAS  Google Scholar 

  • Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2009) Interactions between arbuscular mycorrhizal fungi and soil microorganisms. In: Khasa D, Piché Y, Coughlan AP (eds) Advances in mycorrhizal science and technology. NRC Research Press, Ottawa, pp 51–69

    Google Scholar 

  • Mahanta B, Phukan PN (2000) Effects of Glomus fasiculatum on penetration and development of Meloidogyne incognita on black gram. J Agric Soc North East India 13:215–217

    Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil 251:279–289

    Article  CAS  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogyne species – a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root knot nematodes. CAB International, Wallingford, pp 1–17

    Chapter  Google Scholar 

  • Munif A, Hallmann J, Sikora RA (2001) Induced systemic resistance of selected endophytic bacteria against Meloidogyne incognita on tomato. Med Fac Landbouww Univ Gent 66:663–669

    CAS  Google Scholar 

  • Pinochet J, Calvet C, Camprubi A, Fernandez C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: a review. Plant Soil 185:183–190

    Article  CAS  Google Scholar 

  • Plenchette C, Morel C (1996) External phosphorus requirements of mycorrhizal and non-mycorrhial barley and soybean plants. Biol Fertil Soils 21:303–308

    Article  Google Scholar 

  • Ploeg AT, Maris PC (1999) Effect of temperature on the duration of the life cycle of a Meloidogyne incognita population. Nematology 1:389–393

    Article  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Shreenivasa KR, Krishnappa K, Ravichandra NG (2007) Survival and penetration of Meloidogyne incognita larvae in tomato roots in presence of arbuscular mycorrhizal fungus, Glomus fasciculatum. Karnataka J Agric Sci 20:166–167

    Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46:15–23

    Article  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces eusteiches? Mol Plant Microbe Interact 13:238–241

    Article  PubMed  CAS  Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular–arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  Google Scholar 

  • Speijer PR, De Waele D (1997) Screening of Musa germplasm for resistance and tolerance to nematodes. INIBAP Technical guidelines, nr. 1. INIBAP, Montpellier

    Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production: applying knowledge. Haworth Press, New York, pp 67–122

    Google Scholar 

  • Suresh CK, Bagyaraj DJ, Reddy DDR (1985) Effect of vesicular–arbuscular mycorrhiza on survival, penetration and development of root-knot nematode in tomato. Plant Soil 87:305–308

    Article  Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    Article  PubMed  CAS  Google Scholar 

  • Veresoglou SD, Rillig MC (2011) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett. doi:10.1098/rsbl.2011.0874

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular–mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A (2011) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil. doi:10.1007/s11104-011-1070-x

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006a) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans andMeloidogyne incognita. Nematology 8:89–101

    Article  CAS  Google Scholar 

  • Wuyts N, Zin Thu Zar M, Swennen R, De Waele D (2006b) Banana rhizodeposition: characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil 283:217–228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a specialization grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) to C. Vos and a VLIR-UDC grant from the Belgian Government to R. Mkandawire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vos, C., Geerinckx, K., Mkandawire, R. et al. Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza 22, 157–163 (2012). https://doi.org/10.1007/s00572-011-0422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0422-y

Keywords

Navigation