Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhizal (AM) status of nine dominant sedge species and the diversity of AM fungi in Tibetan grassland were surveyed in the autumn of 2003 and 2004. Most of the sedge species and ecotypes examined were mycorrhizal, but Carex moorcroftii and Kobresia pusilla were of doubtful AM status, and Kobresia humilis was facultatively mycorrhizal. This is the first report of the mycorrhizal status of eight of the nine sedge species examined. Intraradical vesicles and aseptate hyphae were the structures most frequently observed. Appressoria, coils, and arbuscules were found in the roots of a few sedge species. A strong negative correlation was found between soil organic matter content and the extent of mycorrhizal colonization. Using trap cultures, 26 species of AM fungi belonging to six genera, Glomus, Acaulospora, Paraglomus, Archaeospora, Pacispora, and Scutellospora, were isolated from the soil samples collected. The frequency of occurrence of different taxa of AM fungi varied greatly. Glomus and Acaulospora were the dominant genera, and Acaulospora scrobiculata was the most frequent and abundant species. The species richness of AM fungi was 2.73 in the study area. Species richness and diversity index differed among the sedge species but were not correlated with soil factors such as pH, available P, or organic matter content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addy HD, Boswell EP, Koide RT (1998) Low temperature acclimation and freezing resistance of extraradical VA mycorrhizal hyphae. Mycol Res 102:582–586

    Article  Google Scholar 

  • Allsopp N, Stock WD (1993) Mycorrhizal status of plants growing in the Cape Floristic Region, South Africa. Bothalia 23:91–104

    Google Scholar 

  • Bever JD (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244:281–290

    Article  CAS  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–931

    Article  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32. Australian Centre for International Agricultural Research, Canberra

  • Brundrett MC, Jasper DA, Ashwath N (1999) Glomalean mycorrhizal fungi from tropical Australia II. The effect of nutrient levels and host species on the isolation of fungi. Mycorrhiza 8:315–321

    Article  Google Scholar 

  • Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130

    Article  Google Scholar 

  • Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathologic Society, St. Paul, MN, pp 29–35

    Google Scholar 

  • Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130

    Article  Google Scholar 

  • Harley JL, Harley EL (1987) A checklist of mycorrhiza in the British flora. New Phytol 105 (Suppl):1–102

    Article  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Genet Biol 23:205–212

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 79:1161–1166

    Article  Google Scholar 

  • Koske SE, Gemma JN, Flynn T (1992) Mycorrhizae in Haiwaiian angiosperms: a survey with implications for the origin of the native flora. Am J Bot 79:853–862

    Article  Google Scholar 

  • Lovera M, Cuenca G (1996) Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–118

    Article  Google Scholar 

  • Lu RK (2000) Methods of soil and agricultural chemistry analyses (in Chinese). China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular–arbuscular mycorrhizal associations. Mycol Res 94:120–122

    Google Scholar 

  • Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313

    Article  Google Scholar 

  • Muthukumar T, Sha LQ, Yang XD, Cao M, Tang JW, Zheng Z (2003) Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13:289–297

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges: an overview. Mycorrhiza 14:65–77

    Article  PubMed  CAS  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854

    Article  Google Scholar 

  • Peterson RL, Bradbury SM (1995) Use of plant mutants, intraspecific variants and non-hosts in studying mycorrhiza formation and function. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidelberg New York, pp 521–560

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H, (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    Article  PubMed  CAS  Google Scholar 

  • Schenck NC, Péréz Y (1990) Manual for the identification of vesicular–arbuscular mycorrhizal fungi. INVAM, University of Florida, Gainesville

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of ‘nonmycorrhizal’ plants. Can J Bot 65:419–431

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Projects 30370818, 30260055, and 30470341) and the Royal Society (China Exchanges Project 15360) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Li.

Appendix

Appendix

AM fungal species and their frequency of isolation from rhizosphere soils of sedges

Species

Frequency

Acaulospora appendicula Spain, Sieverding & Schenck

4.5

Acaulospora dilatata Morton

9.1

Acaulospora laevis Gerd. & Trappe

22.7

Acaulospora mellea Spain & Schenck

4.5

Acaulospora scrobiculata Trappe

31.8

Acaulospora spinosa Walker & Trappe

9.1

Acaulospora sp. 1

9.1

Acaulospora sp. 2

4.5

Archaeospora gerdemanni (Rose, Daniels & Trappe) Morton & Redecker

4.5

Glomus claroideum Schenck & Sm. emend Walker & Vestberg

18.2

Glomus convolutum Gerd. & Trappe

4.5

Glomus clarum Nicolson & Schenck

4.5

Glomus diaphanum Morton & Walker

9.1

Glomus etunicatum Becker & Gerdemann

9.1

Glomus geosporum (Nicol. & Gerd.) Walker

9.1

Glomus glomerulatum Sieverd.

4.5

Glomus intraradices Schenck & Smith

22.7

Glomus luteum Kennedy, Stutz, et Morton

4.5

Glomus manihotis Howeler, Sieverd. & Schenck

4.5

Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe

27.3

Glomus verruculosum Btaszk

9.1

Glomus sp. 1

9.1

Pacispora scintillans (Rose & Trappe) Oehl & Sieverd

13.6

Paraglomus occultum (Walker) Morton & Redecker

9.1

Scutellospora calospora (Nicol. & Gerd.) Walker

9.1

Scutellospora verrucosa (Koske & C. Walker) Walker & Sanders

4.5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, J.P., Cai, X.B., Feng, G. et al. Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza 16, 151–157 (2006). https://doi.org/10.1007/s00572-005-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0031-8

Keywords

Navigation