Skip to main content
Log in

Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Effects of elevated atmospheric carbon dioxide (CO2) levels on the production and spread of ectomycorrhizal fungal mycelium from colonised Scots pine roots were investigated. Pinus sylvestris (L.) Karst. seedlings inoculated with either Hebeloma crustuliniforme (Bull:Fr.) Quél. or Paxillus involutus (Fr.) Fr. were grown at either ambient (350 ppm) or elevated (700 ppm) levels of CO2. Mycelial production was measured after 6 weeks in pots, and mycelial spread from inoculated seedlings was studied after 4 months growth in perlite in shallow boxes containing uncolonised bait seedlings. Plant and fungal biomass were analysed, as well as carbon and nitrogen content of seedling shoots. Mycelial biomass production by H. crustuliniforme was significantly greater under elevated CO2 (up to a 3-fold increase was observed). Significantly lower concentrations and total amounts of N were found in plants exposed to elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3A–F
Fig. 4A–H

Similar content being viewed by others

References

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9:125–135

    Article  Google Scholar 

  • Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ Pollut 106:169–182

    CAS  Google Scholar 

  • Chilvers GA, Gust LW (1982) The development of mycorrhizal populations on pot-grown seedlings of Eucalyptus st-johnii R.T. Bak. New Phytol 90:677–699

    Google Scholar 

  • Colpaert JV, van Laere A, van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non- mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787–793

    CAS  Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas. 3. Compatible and incompatible interactions between Suillus grevillei Klotzsch Sing and 11 species of ectomycorrhizal hosts in vitro in the absence of exogenous carbohydrate. New Phytol 103:457–465

    CAS  Google Scholar 

  • Egli P, Maurer S, Spinnler D, Landolt W, Gunthardt-Georg MS, Korner C (2001) Downward adjustment of carbon fluxes at the biochemical, leaf, and ecosystem scale in beech-spruce model communities exposed to long-term atmospheric CO2 enrichment. Oikos 92:279–290

    CAS  Google Scholar 

  • Finlay RD, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen M (ed) Mycorrhiza functioning. Chapman and Hall, London, pp 134–160

  • Finzi AC, Delucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578

    Article  Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    Article  CAS  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2001) Elevated atmospheric CO2 alters root symbiont community structure in forest trees. New Phytol 152:431–442

    Article  CAS  Google Scholar 

  • Garbaye J (1983) Premiers resultats de researches sur la competitivite des champignons ectomycorrhiziens. Plant Soil 71:303–308

    Google Scholar 

  • Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51:1931–1938

    Article  CAS  PubMed  Google Scholar 

  • Gavito ME, Bruhn D, Jakobsen I (2002) P uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO2 enrichment. New Phytol 154:751–760

    Article  Google Scholar 

  • Godbold DL, Berntson GM (1997) Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera. Tree Physiol 17:347–350

    Google Scholar 

  • Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytol 137:433–440

    Article  CAS  Google Scholar 

  • Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated CO2. New Phytol 146:163–168

    Article  Google Scholar 

  • Gunderson CA, Wullschleger SD (1994) Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynth Res 39:369–388

    CAS  Google Scholar 

  • Ineichen K, Wiemken V, Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18:703–707

    Google Scholar 

  • Ingestad T (1979) Mineral nutrient requirements of Pinus sylvestris and Picea abies seedlings. Physiol Plant 45:373–380

    CAS  Google Scholar 

  • Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL (2002) Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:4370–4376

    Article  PubMed  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Global Change Biol 3:473–478

    Article  Google Scholar 

  • Klironomos JN, Ursic M, Rillig M, Allen MF (1998) Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytol 138:599–605

    Article  Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow S (ed) The Mycota IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301

  • Miller SL, Durall DM, Rygiewicz PT (1989) Temporal allocation of 14C to extramatrical hyphae of ectomycorrhizal ponderosa pine seedlings. Tree Physiol 5:239–249

    Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    CAS  Google Scholar 

  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–1266

    Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  CAS  PubMed  Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

  • Rey A, Jarvis PG (1997) Growth response of young birch trees Betula pendula Roth. after four and a half years of CO2 exposure. Ann Bot 80:809–816

    Article  Google Scholar 

  • Rouhier H, Read DJ (1998a) Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus sylvestris. Environ Exp Bot 40:237–246

    Article  Google Scholar 

  • Rouhier H, Read DJ (1998b) The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytol 139:367–373

    Article  Google Scholar 

  • Rouhier H, Billes G, Elkohen A, Mousseau M, Bottner P (1994) Effect of elevated CO2 on carbon and nitrogen distribution within a tree Castanea sativa Mill soil system. Plant Soil 162:281–292

    Google Scholar 

  • Sanders IR, Streitwolf-Engel R, van der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117:496–503

    Article  Google Scholar 

  • Saxe H, Ellsorth DS, Heath J (1998) Tansley review no. 98. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

  • Staddon PL, Graves JD, Fitter AH (1999) Effect of enhanced atmospheric CO2 on mycorrhizal colonization and phosphorus inflow in 10 herbaceous species of contrasting growth strategies. Funct Ecol 13:190–199

    Article  Google Scholar 

  • Vignon C, Plassard C, Mousain D, Salsac L (1986) Assay of fungal chitin and estimation of mycorrhizal infection. Physiol Veg 24:201–207

    CAS  Google Scholar 

  • Wallander H, Nylund JE (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120:495–503

    CAS  Google Scholar 

  • Wallander H, Nilsson L-O, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    Article  CAS  Google Scholar 

  • Ward JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Physiol 19:211–220

    PubMed  Google Scholar 

  • Wiemken V, Ineichen K, Boller T (2001) Development of ectomycorrhizas in model beech-spruce ecosystems on siliceous and calcareous soil: a four year experiment with atmospheric CO2 enrichment and nitrogen fertilization. Plant Soil 234:99–108

    Article  Google Scholar 

  • Wigley TML, Raper SCB (1992) Implications for climate and sea-level of revised IPCC emissions scenarios. Nature 357:293–300

    CAS  Google Scholar 

  • Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Jan Parsby for technical support in constructing the CO2 chambers, and Björn Lindahl for discussing the results. We are grateful to Ian Alexander for comments on the manuscript. This work was done with financial support from the Swedish Energy Adminstration (STEM) and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra M. A. Fransson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fransson, P.M.A., Taylor, A.F.S. & Finlay, R.D. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2 . Mycorrhiza 15, 25–31 (2005). https://doi.org/10.1007/s00572-003-0289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0289-7

Keywords

Navigation