Skip to main content

Advertisement

Log in

User Authentication Based on Quantum-Dot Cellular Automata Using Reversible Logic for Secure Nanocommunication

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

QCA is a new nanodevice to achieve logic circuit at nanoscale level. User authentication is a key issue in nanocommunication, to allow only authorized user to access data. Excessive heat dissipation of irreversible process caused the circuitry bound of CMOS-based circuit. Reversible logic is an alternative to these problems. Reversible circuits have very low heat energy dissipation which is ideally zero. This paper illustrates an optimized design of Fredkin gate using QCA. The proposed Fredkin gate has outshined the existing circuits in terms of area, cell count, and latency. The design of reversible user password authenticator circuit has been explored based on Fredkin gate. The quantum cost of this authenticator circuit is five. For the first time, QCA layout of proposed user authenticator is also achieved in this paper. The quantum cost of QCA-based authenticator circuit is 0.041. All the QCA circuits are precise in terms of QCA cell, device density, and clocking zones, i.e., latency. Theoretical values are compared with simulation results that justify the design accuracy of the proposed circuits. The computational functionality of the circuit under thermal randomness is estimated which establishes the stability of the proposed circuit. The estimation of energy dissipation proves that the proposed circuit dissipates very low energy. To achieve low-power nanoscale authenticator circuit, QCA is used to implement the reversible logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennet C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  Google Scholar 

  2. Landauer R.: Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 44, 261–269 (2000)

    Article  Google Scholar 

  3. Das J.C., De D.: Reversible Binary to Grey and Grey to Binary Code Converter using QCA. IETE J. Res. 61(3), 223–229 (2015)

    Article  MathSciNet  Google Scholar 

  4. Lent C.S., Tougaw P.: A Device Architecture for Computing with Quantum Dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  5. Farazkish R., Khodaparast F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(6), 426–433 (2015)

    Article  Google Scholar 

  6. Das, J.C.; De, D.: Quantum dot-cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inf. Technol. Electron. Eng. (2015). doi:10.1631/FITEE.1500079

  7. Kianpour M., Sabbaghi-Nadooshan R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38, 1046–1062 (2014)

    Article  Google Scholar 

  8. Zhang R., Walus K., Wang W., Jullien G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)

    Article  Google Scholar 

  9. Das K., De D.: Characterization, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. J. Mol. Simul. 37, 210–225 (2011)

    Article  Google Scholar 

  10. Das, J.C.; De, D.: Quantum dot cellular automata based cipher text design for nano communication. In: Proceedings of the International Conference on Raddar, Communication and Computing, IEEE, pp. 343–348, SKP Engineering College, Tiruvannamalai, Tamilnadu, India (2012)

  11. Das J.C., Debnath B., De D.: Image steganography using quantum dot cellular automata. Quant. Matter 4(5), 504–517 (2015)

    Article  Google Scholar 

  12. Das, J.C.; De, D.: Reversible comparator design using quantum dot-cellular automata. IETE J. Res. (2015). doi:10.1080/03772063.2015.1088407

  13. De, D.; Bhattacharaya, S.; Ghatak, K.P.: Quantum Dots and Quantum Cellular Automata: Recent Trends and Applications. Nova Science Publishers, Inc., USA (2013)

  14. Das K., De D., De M.: Realisation of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett. 8, 258–263 (2013)

    Article  Google Scholar 

  15. Das K., De D., De M.: Competent universal reversible logic gate design for quantum dot cellular automata. WSEAS Trans. Circuits Syst. 11, 401–411 (2012)

    Google Scholar 

  16. Walus, K.: ATIPS Laboratory QCADesigner Homepage. ATIPS Laboratory, University of Calgary, Calgary, Canada. http://www.atips.ca/projects/qcadesigner (2002)

  17. Das K., De D.: Characterization, test and logic synthesis of novel conservative & reversible logic gates for QCA. Int. J. Nanosci. 9, 201–214 (2010)

    Article  Google Scholar 

  18. Das R.K., Bhattacharya P.: User authentication based on keystroke dynamics. IETE J. Res. 60, 229–239 (2014)

    Article  Google Scholar 

  19. Amiri, M.A.; Mahdavi, M.; Mirzakuchaki, S.: QCA implementation of A5/1 stream cipher. In: Second International Conference on Advances in Circuits, Electronics and Micro-Electronics, IEEE, pp. 48–51 (2009)

  20. Amiri, M.A.; Mahdavi, M.; Atani, R.E.; Mirzakuchaki, S.: QCA implementation of serpent block cipher. In: Second International Conference on Advances in Circuits, Electronics and Micro-Electronics, IEEE, pp. 16–19 (2009)

  21. Amiri M.A., Mirzakuchaki S., Mahdavi M.: LUT-based QCA realization of a 4 × 4 S-boxes. Can. J. Electr. Electron. Eng. 1, 27–31 (2010)

    Google Scholar 

  22. Das, S.; De, D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. In: International Conference on Raddar, Communication and Computing, IEEE, pp. 43–47, SKP Engineering College, Tiruvannamalai, Tamilnadu, India (2012)

  23. Anderson N.G., Maalouli F., Mestancik J.: Quantifying the computational efficacy of nanocomputing channels. Nano Commun. Netw. 3(3), 139–150 (2012)

    Article  Google Scholar 

  24. Sardinha L.H., Costa A.M.M., Neto O.P.V., Vieira L.F.M., Vieira M.A.M.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31(12), 825–834 (2013)

    Article  Google Scholar 

  25. Yao, F.; Zein-Sabatto, M. S.; Shao, G.; Bodruzzaman, M.; Malkani, M.: Nanosensor data processor in quantum-dot cellular automata. J. Nanotechnol. (2014). doi:10.1155/2014/259869

  26. Kamaraj, A.; Ramya, S.: Design of router using reversible logic in quantum cellular automata. In: International Conference on Communication and Network Technologies (ICCNT) (2014). doi:10.1109/CNT.2014.7062764

  27. Silva D., Sardinha L., Vieira M., Vieira L., Vilela Neto O.: Robust serial nano-communication with QCA. IEEE Trans. Nanotechnol. 13(3), 464–472 (2015)

    Article  Google Scholar 

  28. Ma X., Huang J., Metra C., Lombardi F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test 25, 39–54 (2009)

    Article  Google Scholar 

  29. Thapliyal H., Ranganathan N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9, 62–69 (2010)

    Article  Google Scholar 

  30. Saravanan P., Kalpana P.: A novel and systematic approach to implement reversible gates in quantum dot cellular automata. WSEAS Trans. Circuits Syst. 12, 307–316 (2013)

    Google Scholar 

  31. Fredkin E., Toffoli T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma X., Huang J., Metra C., Lombardi F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Electron. Test. 24(1), 297–311 (2008)

    Article  Google Scholar 

  33. Thapliyal H., Ranganathan N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)

    Article  Google Scholar 

  34. Mohammadi Z., Mohammadi M., Hasani M.: Designing of testable reversible QCA circuits using a new reversible MUX 2 × 1. J. Adv. Comput. Res. 3(1), 51–64 (2012)

    Google Scholar 

  35. Thapliyal H., Ranganathan N., Kotiyal S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013)

    Article  Google Scholar 

  36. Mohammadi Z., Mohammadi M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quant. Inf. Process 13(9), 2127–2147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu W., Srivastava S., Lu L., O’Neill M., Swartzlander E.E.: Are QCA cryptographic circuits resistant to power analysis attack?. IEEE Trans. Nanotechnol. 11, 1239–1251 (2012)

    Article  Google Scholar 

  38. Pudi V., Sridharan K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19, 1535–1548 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadav Chandra Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J.C., De, D. User Authentication Based on Quantum-Dot Cellular Automata Using Reversible Logic for Secure Nanocommunication. Arab J Sci Eng 41, 773–784 (2016). https://doi.org/10.1007/s13369-015-1870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1870-z

Keywords

Navigation